
Studies Concerning the Meaning of
Computer Programs:

Formal Specifications and Implementations,

Monolithic and Distributed Programs,

and the Semantics of Syntactic Transformations

Xueying Qin

秦雪莹

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2024

Abstract

This doctoral thesis presents three studies that concerns the meaning of computer pro-

grams in three different aspects, namely, specifications and implementations, mono-

lithic and distributed frameworks, and the formal semantics of syntactic transforma-

tions. In general, three conceptual questions have been asked and addressed by these

three studies.

The first conceptual question is: How to design a better abstraction mechanism

that allows programmers to effectively express what they want a computer to do via

some declarative yet accurate specifications instead of how a computer should ac-

complish a task via some concrete implementations? The study, “Primrose: Selecting

Container Data Types by Their Properties”, addresses this question by exploring ways

to design a specification for a container that truly allows a programmer to separate its

interface and usage from the implementation and to select a concrete implementation

determined by its interface and usage. By conducting this study, I conclude that such

separation of concerns enables automation and optimisation for application develop-

ers to use a container data type in their programs.

The second conceptual question is: How to intuitively understand distributed pro-

grams using the same conceptual model as monolithic programs? The question is

addressed by the study of designing a remote procedural call library — the Universal

Method Invocation (UMI) library — for Rust. The UMI library supports location trans-

parency by encapsulating the message-passing details and provides programmers an

interface that allows them to migrate a monolithic program into a distributed setting,

while preserving the semantics and without massive changes to the syntax of the pro-

gram. This study provides a perspective on designing distributed systems: A mono-

lithic program can be viewed as an abstraction of a distributed program, specifying

what functionalities a program attempts to achieve instead of how these functionali-

ties are achieved in a distributed setting by abstracting away the details of distributed

memory management and message passing over a network.

The third conceptual question is: How do we characterise the relationship be-

tween the syntax and semantics of programming languages? The study, “Shoggoth:

A Formal Foundation for Strategic Rewriting”, addresses this question by giving three

different models of formal semantics: denotational semantics, big-step operational se-

mantics, and axiomatic semantics, to a core calculus of strategic rewriting languages

which is used for composing syntactic transformations. The study provides a per-

iii

spective on the relationship in the context of rewriting: The syntax and semantics are

interdependent, since we have observed that transformations of the syntax of expres-

sions encode the meaning for the evaluation of these expressions. In the meanwhile

we can characterise and reason about executions of compositions of these syntactic

transformations of expressions by analysing their semantics.

iv

Lay Summary

This doctoral thesis presents three distinct studies concerning the meaning of com-

puter programs. Each of these studies addresses a key conceptual question related to

programming language design.

Specification and Implementation: The first

study investigates how programmers can more ef-

fectively articulate what they want a computer to

do (specifications) rather than how it should do it

(implementations). We introduce Primrose, a tool

that allows programmers to define what a container

should accomplish without being concerned about

how it achieves it. This separation enables more ef-

ficient and automated selection of container data types in software development.

Monolithic and Distributed Programs: The sec-

ond study explores how to understand and man-

age distributed programs using the same principles

as monolithic programs. we present the Univer-

sal Method Invocation (UMI) library for the Rust

programming language. UMI simplifies the tran-

sition from monolithic to distributed programs by

concealing the complexities of message-passing and

distributed memory management, thereby allowing

programmers to maintain the same program structure and functionality across dif-

ferent computing environments.

Syntax and Semantics: The third study exam-

ines the relationship between the structure (syn-

tax) and meaning (semantics) of programming lan-

guages. We introduce Shoggoth, a formal frame-

work of strategic rewriting in programming lan-

guages. This study demonstrates that the way ex-

pressions are written (syntax) and their meaning

(semantics) are closely interlinked, and understand-

ing this relationship is crucial for accurately predicting and reasoning about the be-

haviour of programs.

v

In summary, these studies provide insights into designing effective programming

languages and frameworks, emphasising the importance of formal specifications, seam-

less transitions between different program architectures, and the interplay between

syntax and semantics.

vi

Acknowledgements

First of all, I would like to thank my supervisor Michel Steuwer. Having Michel as my

supervisor is one of the best things could ever happen in my life. I started working

with Michel when I was an undergraduate student in University of Glasgow. During

the five years that we worked together, Michel provided unlimited freedom, trust, and

support for me to explore areas that I am curious about. Because of his guidance, I

am able to keep questioning what the meaning of the world is and pursuing what I

really want for my life.

I had a great time being a member of Michel’s ComPL research group. I would like

to express my gratitude to everyone I met in this group, including Bastian Köpcke,

Martin Lücke, Johannes Lenfers, Rongxiao Fu (傅荣枭), Thomas Kœhler, Federico

Pizzuti, Rudi Schneider, Nicole Heinmann, and Selkan Muhcu.

I sincerely thank Tianyi Li (李天翼) and Leyang Xue (薛乐阳) for being my sup-

portive and caring friends. Particularly, I would like to thank Tianyi, who studies

computational linguistics, for his vitally important contributions to my understand-

ing of the conceptual correspondence and theoretical connections between formalism

and analysis of natural languages and programming languages. I would like to thank

Leyang, for providing me delicious food and taking care of my pet Medusa, which is

a Venus flytrap.

I sincerely thank my collaborator Rob van Glabbeek for all the inspiring discus-

sions. In addition, I will always remember the question he asked me when I was

having a severe life crisis and considering giving up:“Do you want to be a scientist?”

My answer was yes, and my answer is still yes.

Thanks to Tobias Grosser for always being helpful and supportive. Especially, I

would like thank him for inviting me to visit his group in University of Cambridge. I

spent a wonderful week with them during my stay in Cambridge.

Thanks to my second supervisor Sam Lindley for his insightful inputs in my an-

nual reviews, thesis writing, and career decision making, as well as his apples.

Thanks to all researchers and my collaborators who have positively contributed to

my research, including Ohad Kammar, Peter Höfner, Glynn Winskel, and Dan Ghica.

Thanks to everyone in the Friday standup group, especially Wenhao Tang (唐雯

豪) and Anton Lorenzen. Thanks to everyone in my office IF 2.33.

I would like to thank my parents for being supportive to all life decisions I have

made, and for their financial support allowing me to build a safe base that I could call

vii

a “home” in Edinburgh.

I would like to thank my friend Ke Shen (申可), who is one of the most talented

young researchers and brave people I have met. Although there are a lot of feelings

that cannot be expressed by words, I do hope you, as a wonderful researcher, to keep

pursuing your dream.

I would like to thank my most special friend Yichen Xu (徐逸辰). Thank you for

approaching and visiting the glass tower that I live in and I am trapped in. And thank

you for agreeing to accompany me to step out of the tower, and to live a life.

I would like to thank my therapist Paulina Nowak. During the past two years,

we have worked closely together to understand my post-traumatic stress disorder

(PTSD). Because of you, I am able to be aware of and step out of the vivid past that I

was trapped into, and look forward.

This thesis is assembled during my visit to different universities, including EPFL,

TU Berlin, University of Cambridge, and SDU, as well as different cities, includ-

ing Lausanne, Geneva, Montreux, Paris, Berlin, Cambridge, Vienna, Budapest, and

Odense. I would like to thank everyone I met during the journey.

Many thanks to the examiners, Elizabeth Polgreen and Dominic Orchard.

viii

Declaration
I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work

has not been submitted for any other degree or professional qualification except as

specified. This thesis contains published papers, specifically:

• Chapter 2 is based on the paper: Xueying Qin, Liam O’Connor, and Michel

Steuwer (2023). Primrose: Selecting Container Data Types by Their Properties.

Art Sci. Eng. Program., 7(3)

• Chapter 4 is based on the paper: Xueying Qin, Liam O’Connor, Rob van Glabbeek,

Peter Höfner, Ohad Kammar, and Michel Steuwer (2024). Shoggoth: A Formal

Foundation for Strategic Rewriting. Proc. ACM Program. Lang., 8(POPL)

I declare that as the first author of both papers, I made most significant contribu-

tions amongst all my co-authors, including proposing these projects, designing and

implementing these frameworks, conducting experiments and case studies, major for-

malisation work, writing papers, and preparing artifacts.

Xueying Qin

秦雪莹

ix

Table of Contents

1 Climbing the Tower of Babel
Introduction 1

2 Specifications, All Too Specific
Selecting Container Data Types by Their Properties 15
2.1 Introduction . 16

2.2 Motivation . 18

2.3 Overview . 21

2.4 Property Specifications . 24

2.4.1 Syntactic Properties as Traits 25

2.4.2 Semantic Properties as Predicates 26

2.4.3 The Dependencies between Semantic Properties and Syntactic

Properties . 28

2.5 Library Specifications . 29

2.5.1 The Basic Design of Library Specifications 29

2.5.2 The Library Specification of A LinkedList 32

2.5.3 The Library Specification of A BTreeSet 34

2.5.4 The Library Specification of A HashSet 36

2.5.5 Abstracting Over Implementation Details with Library

Specifications . 37

2.6 Selecting and Ranking Implementations 37

2.6.1 Selecting Container Implementations Satisfying Syntactic Prop-

erties . 37

2.6.2 Selecting Container Implementations Satisfying Semantic Prop-

erties . 38

2.6.3 Handling Dependencies Between Semantic and Syntactic Prop-

erties . 40

xi

2.6.4 Code Generation and Ranking Implementations by Performance 41

2.7 Evaluation . 42

2.7.1 Correctness of Container Implementations w.r.t Their

Library Specifications . 42

2.7.2 Evaluation of Primrose’s Selection Time 43

2.8 Discussion of Limitations . 44

2.9 Related Work . 45

2.10 Conclusion . 46

3 Oxidising Remote Procedure Calls
A Universal Method Invocation Library for Rust 49

3.1 Introduction . 50

3.1.1 Contributions . 50

3.1.2 Limitations . 51

3.2 Background . 52

3.2.1 Remote Procedure Calls . 52

3.2.2 Rust . 53

3.3 The Design and Implementation of the Rust UMI Library 54

3.3.1 Overview . 54

3.3.2 The Design of the Translation 55

3.3.3 Resource Management . 56

3.3.4 Passing Remote Invocations via Messages 58

3.3.5 Extending Borrow Checking into Distributed Settings 58

3.3.6 Extending Lifetime Management to Distributed Settings . . . 62

3.4 The Operational Semantics . 64

3.4.1 The Revised Syntax and Semantics of FR 65

3.4.2 The Syntax and Semantics of dFR 67

3.4.3 Preservation of Semantics when Translating a FR Program

into a dFR Program . 72

3.4.4 Summary . 82

3.5 Related Work . 82

3.6 Conclusion and Further Work . 85

3.A The Type System of FR . 88

3.A.1 Preliminaries . 88

3.A.2 Typing Rules . 91

xii

4 Capturing A Shape-Shifter: The Semantic Process
A Formal Foundation for Strategic Rewriting 93
4.1 Introduction . 94

4.2 The Syntax of System S . 97

4.3 The Semantics of System S . 100

4.3.1 The Plotkin Powerdomain . 100

4.3.2 Formalised Denotational Semantics 102

4.3.3 Formalised Big-Step Operational Semantics 107

4.3.4 The Denotational Semantics is Equivalent to The Big-Step Op-

erational Semantics . 109

4.4 Location-Based Weakest Precondition Calculus 112

4.4.1 Modelling Traversals . 114

4.4.2 The Calculus . 114

4.4.3 The Soundness of the Weakest Precondition Calculus w.r.t.

the Formal Semantics . 120

4.5 Reasoning About Strategies with Weakest Precondition Calculus . . . 121

4.5.1 Reasoning About Termination 122

4.5.2 Reasoning About Well Composed Strategies 123

4.5.3 Reasoning About Beta-Eta Normalisation 124

4.5.4 Discussion . 127

4.6 Related Work . 128

4.7 Conclusion and Future Work . 131

5 TheThorn andThe Bird: Still We Do It
Conclusion 135

Bibliography 141

xiii

Chapter 1

Climbing the Tower of Babel

Introduction

The Lord said, “If as one people speaking the same language they have

begun to do this, then nothing they plan to do will be impossible for

them. Come, let us go down and confuse their language so they will not

understand each other.”

So the Lord scattered them from there over all the earth, and they

stopped building the city. That is why it was called Babel — because

there the Lord confused the language of the whole world. From there

the Lord scattered them over the face of the whole earth.

— Genesis 11:1–9 NRSVUE

H
umans are divided into different linguistic groups, therefore, they are un-

able to understand each other. That said, “meaning” is encoded into dif-

ferent conceptual schemes in different languages; without accurate trans-

lations, it is ultimately difficult for people who speak different languages to commu-

nicate with each others. In addition, due to the nature of natural language being

ambiguous, it is hard to accurately reason about what others really mean even when

they speak the same language.

Over the decades, there have been various studies concerning the meaning of lan-

guage. The term semantics is used to refer to the studies of linguistic meaning (Katz,

1972; Palmer, 1981). From a philosophical perspective, there are different theories

1

2 Chapter 1. Climbing the Tower of Babel

of meaning. Lewis (1970) describes two topics of the studies of meaning. The first

topic corresponds to the first observation from the mythology — “meaning is encoded

into different conceptual schemes in different languages”. This topic concerning the

meaning of languages is to understand the psychological and sociological facts that

a person or a group of people give certain meanings to the symbols in their lan-

guages (Lewis, 1970). One kind of approaches are ideational theories (Chapman and

Routledge, 2009). These theories examine the meaning in terms of and as an output of

people’s mental representations (Stich and Warfield, 1994). A different point of view

is initiated by Kripke (1980), who argues against the idea of proper name being syn-

onymous with definite descriptions, while proposing that names are associated with

their referents through a causal chain of reference. Such a causal theory further sug-

gests that the meaning of an expression instead of being inherited from mental states,

is determined by the causal connections that the expression has with the objects or

concepts that it refers to.

The second topic corresponds to the second observation — “it is hard to accurately

reason about what others really mean even under the context of a same language”.

This topic considers how to accurately examine and analyse the meaning of an expres-

sion (i.e., a word or a sentence) in a given language (Lewis, 1970). Specifically, Frege

(1892) introduces a theory of reference, suggesting that meaning of an expression in-

volves both its reference to an object, which is a proper name that contributes to the

truth value of a sentence, and its sense, which is how the object is presented. Using

the example sentence “the present King of France is bald”, Russell’s theory of descrip-

tion (Russell, 1905) argues that Frege’s notion of sense and reference is not sufficient

for analysing an expression which has sense but no reference, while introducing a

rigorous analytic method for problematic propositions, concerning denoting phrases,

making use of the machinery of first-order logic featuring propositional functions.

Following Tarski’s (1944) truth definition of a sentence, Davidson (1967) proposes an

approach with the core idea that meaning should be understood based on a formal

theory of truth. There are also semantic internalism theories (Mcgilvray, 1998; Chom-

sky, 2000; Pietroski, 2017) that instead of giving truth value to expressions, view the

meaning of an expression as what is used for building a particular mental represen-

tation. Taking a holistic approach to analyse the meaning of expressions, inferential

semantics theories (Brandom, 2000) argue against the idea of using established truth

conditions to further analyse good and bad inferences. Instead, these theories sug-

gest to first study the distinction between good and bad inferences, which provides

3

the basis for understanding truth conditions, hence the meaning of an expression is

studied in relation to other expressions.

Linguists tend to adopt less abstract approaches to analyse the meaning of lan-

guages. There are also many different topics within linguistic studies of semantics.

One important field of linguistic semantics is lexical semantics, which concerns

the meaning of words (Palmer, 1981; Pustejovsky, 2006; Geeraerts, 2017), including

topics such as the semantic structure of words like ambiguity and polysemy as well as

the semantic relations between words such as metaphor and metonymy. In particular,

lexical fields (alternatively semantic fields), which were initially introduced by Trier

(1931), study the meaning of words according to their relationship to other words of

which the meanings are interdependent (Palmer, 1981; Jackson and Amvela, 2000),

and lexical relations study the structural relation between words like synonymy and

antonymy (Geeraerts, 2017).

Another widely explored field of linguistic semantics is structural semantics, or

more general, structural linguistics, which is inspired by de Saussure’s (1916) semiotic

analysis centring linguistic signs, attempting to analyse a language as a structured

system of interrelated elements. In particular, the aforementioned topics like semantic

fields and lexical relations as well as other semantic relations between words have

been taken from the lexical studies and further developed into a structured basis for

the analysis of words’ meaning (Geeraerts, 2017). Such an influential approach has

later been adapted into the studies of generative grammars and their formalism (Katz

and Fodor, 1963; Chomsky, 1975).

Cognitive semantics is a major part of cognitive linguistics, which is an impor-

tant linguistic field that has been explored for decades by Johnson (1987), Lakoff and

Johnson (1980), Langacker (1987), Fauconnier and Turner (1998). Taking an alter-

native approach from the structural linguistics, it studies the meaning of languages

under the context of human cognition, specifically, viewing semantics as a conceptual

organisation of languages (Talmy, 2000; Croft and Cruse, 2004).

Perhaps along with the emerging natural language processing technology such

as ChatGPT, the field computational linguistics, concerning modelling natural lan-

guages as computational models, has now become one of the most popular areas.

Computational semantics, as an important study within the scope of computational

linguistics, enables automatic analysis of sentences’ meaning via machines (Mitkov,

2022). Based on the aforementioned fields such as lexical semantics and structural se-

4 Chapter 1. Climbing the Tower of Babel

mantics as well as formal semantics like Montague semantics (Montague, 1970) that

will be later discussed, the main focus of this field is the representation of meaning,

where the meaning of the languages are represented via some formal structures, for

instance, logic forms including propositional logic (Boole, 1854) and first order pred-

icate logic (Frege, 1879), discourse representation structure studies in discourse rep-

resentation theory (Kamp and Reyle, 1993), and event structures (Pustejovsky, 1991),

tense logic (Prior, 1955; Kamp, 1968) as well as the temporal anaphora that provides

representations of events and time in sentences (Partee, 1984; Hinrichs, 1986). Seman-

tic parsing is the technique being studied to transform sentences into these semantic

representations, while semantic analysis and inference are performed on these se-

mantic representations for automatically processing the meaning of sentences.

Originated from philosophical view, especially the logic of languages, linguistic

formal semantics focusing on analysing the truth condition aspect of meaning with

frameworks concerning compositionality, specifically, a formal analysis of the seman-

tics of some language is achieved base on a syntactic formalism of a language (Portner

and Partee, 2002). Although obviously the study of linguistic formal semantics does

not intend to explore all features of the semantics of the natural languages, it explores

ways to precisely give a model of the syntax as well as analysis of semantics of sen-

tences. An important work within such a field is categorial grammar, of which Ad-

jukiewicz’s (1935) development provides a formal syntactic approach for analysing

higher-order logic. Such an approach has been later adapted for analysing natural

languages, such as Lambek calculus (Lambek, 1958). Montague semantics is a model-

theoretical approach, providing a relation between syntax and semantics (Montague,

1970). It analyses a subset of English, taking the form of Montague grammar, with the

lambda calculus, higher-order functions, and type theory. Combinatorial categorial

grammar (Steedman, 2001; Steedman and Baldridge, 2011) further provides formal-

ism of categorial grammar with combinatorial logic, which shares the same level of

expressiveness as the lambda calculus.

As we have discussed in the previous paragraphs, within the scope of linguistic

formal studies concerning structured and systematic analysis of the meaning of lan-

guages including computational and formal semantics, various formal systems and

logic frameworks such as the lambda calculus, first-order logic, modal logic, combi-

natorial logic, category theory etc. are used in modelling formal syntactical repre-

sentations of natural languages to enable precise analysis of the semantics as well as

5

to facilitate machines to understand and generate meaningful structured sentences.

Perhaps not surprisingly, these formal systems and logic components also form an

important foundation for the design and analysis of programming languages.

Programming languages are created by humans, serving as an interface for hu-

mans to communicate and interact with computers. Since humans tend to encode

and express information in terms of structured phrases and sentences, like natural

languages, programming languages are designed to have grammar and syntax for hu-

mans to convey their intentions to computers taking the form of computer programs.

While computers execute binary code containing zeros and ones, the communica-

tion processes between humans and computers are facilitated by compilers, which

are responsible for translating information encoded by humans taking the form of

computer programs into executable machine code. The study of programming lan-

guages explores different approaches for effectively expressing better abstractions in

various application domains, facilitating an accurate and efficient compilation pro-

cess, and providing better frameworks for humans to understand and reason about

the behaviours of computers’ executions of programs.

The study of formal semantics of programming languages has been around for

decades and three main forms of formal semantics have been used serving as a foun-

dation for understanding and reasoning about computer programs (Winskel, 1993;

Pierce, 2002). Specifically, operational semantics provides meanings to programs by

modelling how computations get executed. In particular, small-step operational se-

mantics focuses on the incremental reduction of expressions or states, providing a

detailed and precise understanding of program behaviours, while big-step operational

semantics describes the execution of programs in terms of its overall behaviours or

outcomes rather than its individual intermediate execution steps. Operational se-

mantics is particularly useful for the implementation of a programming language.

Denotational semantics gives meanings to programs by modelling the result of com-

putations as mathematical objects. It abstracts away the details of the execution of

programs and gives an elegant mathematical model presenting the core concepts of a

programming language. Instead of modelling how computations get executed or what

are produced by executions of computations, axiomatic semantics provides meanings

to programs by specifying properties satisfied by the results produced by executions

of computations. In practice, it is particularly useful for building a proof system for

reasoning about the execution of programs.

In my three-year short research journey, my fundamental motivations are to gain

6 Chapter 1. Climbing the Tower of Babel

precise understanding of humans’ mental models of computer programs and to im-

prove the design of programming languages in order to allow humans to effectively

communicate with computers. Corresponding to the foundational programming lan-

guages semantics study, I set out to explore ways to design better abstractions to

model and understand programs in order to allow programmers to effectively com-

municate what they want computers to do in terms of programs and precise formal

frameworks allowing us to reason about the behaviours of complicated realistic pro-

grams. At the end of this journey, I have asked three conceptual questions, and con-

ducted three studies concerning the meaning of computer programs, utilising mod-

elling and reasoning techniques presented in the existing studies of formal semantics

of programming languages.

The first conceptual question asked is: How to design better abstraction mecha-

nisms that allow programmers to effectively express what they want a computer to

do via some declarative yet accurate specifications instead of how a computer should

accomplish a task via some concrete implementations?

Formal specification is a rigorous and systematic approach to defining the be-

haviour, structure, and properties of a system with a specification language of which

the syntax and semantics are formally defined such as Z (Spivey, 1989), Alloy (Jack-

son, 2006), and VDM (Jones, 1990) or logics like first-order logic, linear temporal logic

(LTL), and computational tree logic (CTL). It involves describing a system’s function-

ality, constraints, and requirements using precise and unambiguous terms that can be

understood both by humans and potentially processed by automated tools for verifi-

cation and validation.

The main application of formal specifications is to verify and validate software

systems, ensuring desired properties are satisfied. In addition, formal specifications

of a system also form a clear and precise documentation of the system’s requirements,

which facilitate communication amongst developers and maintainers of the system.

We make use of another application of formal specifications to address this con-

ceptual question, which is abstraction. Formal specifications allow developers to focus

on high-level requirements instead of detailed implementations of a system. Such an

abstraction not only facilitates managing the complexity in software development

but also opens up opportunities for achieving better automation and optimisation

in the process of implementing a software system. In the first project, we studied

7

container types in programming languages and their properties, focusing on declara-

tively describing the properties of container types using formal specifications rather

than having these properties concretely implemented for the container types.

Container data types are ubiquitous in computer programming, enabling devel-

opers to efficiently store and process collections of data with an easy-to-use program-

ming interface. Many programming languages offer a variety of container implemen-

tations in their standard libraries based on data structures offering different capabil-

ities and performance characteristics. However, choosing the best container for an

application is not always straightforward, as performance characteristics can change

drastically in different scenarios, and as real-world performance is not always cor-

related to theoretical complexity. Based on this observation, we bring up a research

question: How to design a notion of a container that truly allows to separate its in-

terface and usage from the implementation and to infer the implementation from its

interface and usage?

This question is answered by the project — Primrose: Selecting Container Data

Types by Their Properties. In this project, we present Primrose, a language-agnostic

tool for selecting the best performing valid container implementation from a set of

container data types that satisfy properties specified by application developers. Prim-

rose automatically selects the set of valid container implementations for which li-

brary specifications, written by the developers of container libraries, satisfies the spec-

ified properties. Finally, Primrose ranks the valid library implementations based on

their runtime performance. With Primrose, application developers can specify the

expected behaviour of a container as a type refinement with semantic properties, e.g.,

if the container should only contain unique values (such as a set) or should satisfy

the LIFO property of a stack. Semantic properties nicely complement syntactic prop-

erties (i.e., traits, interfaces, or type classes), together allowing developers to specify a

container’s programming interface and behaviour without committing to a concrete

implementation. We present our prototype implementation of Primrose that prepro-

cesses annotated Rust code, selects valid container implementations and ranks them

on their performance. The design of Primrose is, however, language-agnostic, and

is easy to integrate into other programming languages that support container data

types and traits, interfaces, or type classes. Our implementation encodes properties

and library specifications into verification conditions in Rosette, an interface for SMT

solvers, which determines the set of valid container implementations. We evaluate

Primrose by specifying several container implementations, and measuring the time

8 Chapter 1. Climbing the Tower of Babel

taken to select valid implementations for various combinations of properties with the

solver. We automatically validate that container implementations conform to their li-

brary specifications via property-based testing. This work provides a novel approach

to bring abstract modelling and specification of container types directly into the pro-

grammer’s workflow. Instead of having to select concrete container implementations,

application programmers now work on the level of specifications, merely stating the

behaviours they require from their container types, and the best implementation is

selected automatically. In chapter 2, we discuss this project in detail.

Back to the conceptual question regarding designing better abstraction mecha-

nisms which free programmer from having to choose concrete implementations when

writing programs, in this small study, we have demonstrated that property specifica-

tions and library specifications describing what properties, especially properties giv-

ing an account of functional requirements, a container type and its operations should

satisfy, which are separated from concrete container implementations describing how

properties are satisfied. Such separation of concerns enables automation and optimi-

sation for application developers when using a container data type in their programs.

The second conceptual question asked is: How to intuitively understand distributed

programs using the same conceptual model as monolithic programs?

In software architecture design, a monolithic system features a single unit to be

deployed (Taylor et al., 2009). Since its components and services are tightly coupled

and interconnected, a failure in any one part of it can potentially bring down the entire

system, and it scales as a single unit as all components must scale together, even if

only one part of the application is experiencing increased load, a monolithic system

is inflexible, more susceptible to failures, and less scalable. However, it is easy to

implement, deploy, and test, especially for the development of a light-weight service.

A distributed system on the other hand contains multiple independent components

that can be deployed on different machines, and can communicate and coordinate

with each other over a network. A distributed system is often used in large-scale

applications and services as although it is more scalable and fault-tolerant, however,

it is also more complex to develop, deploy and manage.

There are two motivations to think about conceptually modelling distributed pro-

grams as monolithic programs, despite that they have very different underlying ar-

chitectures, design, and implementation. Firstly, it is common to start implementing

a a system with a monolithic architecture and later migrate it to a distributed design

9

once the system needs to be expanded to a larger scale. However, migrating a mono-

lithic system to a distributed design usually requires non-trivial effort in changing

the program logic and massive re-coding. It would make the migrating process more

straightforward if we had a library with which distributed programs can be encoded

in the same program logic as monolithic programs. Secondly, the implementation of

a distributed system is complicated by the communication between different nodes

via message passing as well as locating, querying, and managing resources over a

network. It would simplify the process of implementing a distributed system if an

application programmer is able to describe the functionality of a distributed program

as a monolithic program while message passing and distributed resource management

are handled internally by a library or framework.

With such motivations, in the second project, a remote procedural call library

for Rust is designed, allowing monolithic programs to be migrated into a distributed

setting without massive re-coding, the library automatically extends Rust’s memory

safety guarantees into the distributed setting.

In distributed computing, a remote procedure call (RPC) allows a method invoca-

tion to be executed on another computer on a shared network. Such a remote method

invocation has the same coding as a local method invocation, without the program-

mer explicitly encoding the details for the remote interaction. However, it is hard

to support location transparency, i.e., in existing RPC frameworks such as Java RMI

and Rust tarpc, remote method invocations do not have the same semantics as local

method invocations. In addition, memory management is hard in a distributed setting,

for instance, distributed garbage collection is known to be complicated.

To address these issues, we design a universal method invocation (UMI) library

in Rust supporting location transparency. With the UMI library, syntactically, a dis-

tributed program is written (almost) the same as its monolithic counterpart; seman-

tically, a distributed program preserves the semantics of a monolithic program. We

choose Rust as a the target language for the UMI framework to utilise Rust’s memory

safety guarantees. Rust is a high-level system programming language which guaran-

tees memory safety and prevents data races by its ownership and borrow checking system

for memory management and checking object lifetime of all references in a program

during compilation. Since Rust has semantics that guarantees memory safety, we

can extend such guarantees to the distributed computing setting, allowing our UMI

framework to provide safe remote method invocations.

We provide a usable Rust implementation of the UMI framework and formalise

10 Chapter 1. Climbing the Tower of Babel

the small-step operational semantics for a core calculus of monolithic and distributed

Rust programs. In addition, we prove a location transparency theorem: When a mono-

lithic program is deployed to multiple nodes with the UMI framework, its semantics

is preserved. This project is discussed in detail in chapter 3.

Back to the conceptual question regarding understanding distributed programs

using the same conceptual model as monolithic programs, this project provides a

perspective to answer this question: A monolithic program can be viewed as an ab-

straction of a distributed program, specifying only what functionalities a program

attempts to achieve instead of how these functionalities are achieved in a distributed

setting by abstracting away the details of distributed memory management and mes-

sage passing over a network. Such a perspective, in addition to the technical contribu-

tions provided by this project, is conceptually meaningful in modelling and designing

distributed systems.

The third conceptual question asked is: How do we characterise the relationship

between the syntax and semantics of programming languages?

I am certainly not the first person asking such a question. In fact, in the world

of linguistic studies, the “linguistics wars” (Newmeyer, 1986) happened in 60s and

70s were a academic dispute on the relationship between the syntax and semantics

of natural languages. Dating back to the 50s, by presenting the sentence “Colourless

green ideas sleep furiously”, which is grammatically correct but nonsensical, Chom-

sky (1957) argues that the syntax of a language is independent from the semantics.

However, some structural linguists emphasise that the analysis of language structure

and meaning should be within a synchronic framework.

In programming languages studies, it is generally agreed that the syntax, which

represents the form of programs, organises the symbols and defines the programs’

structure without giving the meaning to the programs. After defining the syntax, the

semantics, which is the meaning, is then assigned to syntactically valid programs, by

formally describing the execution of programs.

While the syntax and semantics concern different aspects of the design of pro-

gramming languages, they are not completely independent. In the two previous stud-

ies, we have already discussed designs concerning syntactic properties of collections

of data and minimising the changes in syntax while changing the architecture of

programs. There are some conceptually important observations of the design of the

syntactic constructs.

11

Although comparing to modelling semantic properties and reasoning about the

semantic preservation, these syntactic constructs seems to be too straightforward to

discuss in detail and it is not straightforward to evaluate how “well” they have been

designed, they are still very important serving as an abstraction that allows and facili-

tates programmers to convey the intend semantics of programs. In Primrose, we have

seen that some semantic properties like LIFO that depend on syntactic properties, giv-

ing a characterisation of a container by stating the behaviours of specific operations

given by syntactic properties. In the design of the UMI framework, the syntax serves

as the abstraction for location transparency, where the location of resources is ab-

stracted away from how programmers interact with them, while the semantics gives

the meaning, for instance, remote memory allocation and remote borrowing, to such

an abstraction. Utilising the semantics we are able to reason about how resources are

properly used and managed independent from where they are stored.

In the third project, we further studied the syntax and semantics of programming

languages from yet another perspective, via rewriting. Rewriting is a versatile and

powerful technique used in many domains including symbolic computation, theo-

rem proving, programming language semantics, and compiler optimisation. While

being practically useful, rewriting is also conceptually intriguing. In a rewriting sys-

tem, syntactic transformations are used to systematically encode the semantics of the

reduction, simplification and evaluation of expressions. Since these syntactic trans-

formation steps are composable, a valid composition of valid syntactic transformation

steps forms a meaningful program, the process of composing syntactic transforma-

tion steps together has its own rich semantics.

In practice, strategic rewriting is a systematic technique that allows programmers

to control the application of rewrite rules by composing individual rewrite rules into

complex rewrite strategies. While these strategies have concise and intuitive syntac-

tic constructs and simply serve as compositions of syntactic transformations, they

are semantically complex, as they may be nondeterministic, they may raise errors

that trigger backtracking, and they may not terminate. Given such semantic com-

plexity, it is necessary to establish a formal understanding of rewrite strategies and

to enable reasoning about them in order to answer questions such as: How do we

characterise errors and divergence in a strategic rewriting system? How do we un-

derstand and model nondeterminism in the executions of strategies? How do we

know that a rewrite strategy terminates? How do we know that a rewrite strategy

does not fail because we compose two incompatible rewrites? How do we know that

12 Chapter 1. Climbing the Tower of Babel

a desired property holds after applying a rewrite strategy?

These questions are answered by the project — Shoggoth: A Formal Foundation for

Strategic Rewriting. It provides a semantic foundation for understanding, analysing

and reasoning about strategic rewriting that is capable of answering these questions.

We provide a denotational semantics of System S, which is a core calculus of strategic

rewriting languages like Stratego (Visser et al., 1998; Visser, 2001), Elevate (Hagedorn

et al., 2023, 2020), and Strafunski (Lämmel and Visser, 2002), and prove its equivalence

to our big-step operational semantics, which extends existing work by explicitly ac-

counting for divergence. We further define a location-based weakest precondition cal-

culus, which can be seen as an axiomatic semantics of System S (Visser and Benaissa,

1998), to enable formal reasoning about rewriting strategies. We prove this calculus

is sound with respect to the denotational semantics and show how it can be used

in practice to reason about properties of rewriting strategies, including termination,

that strategies are well-composed, and that desired postconditions hold. The seman-

tics and calculus are formalised in Isabelle/HOL and all proofs are mechanised. This

project is discussed in detail in chapter 4.

Back to the relationship between syntax and semantics of programming languages,

in this study, the syntax and semantics are interdependent, since we have observed

that transformations of the syntax of expressions encode the meaning for the evalu-

ation of these expressions. Meanwhile, we can characterise and reason about execu-

tions of compositions of these syntactic transformations of expressions by analysing

their semantics. Such an observation, aside of the practical usefulness of the frame-

work Shoggoth which we build to enable formal understanding and reasoning of

strategic rewriting languages, is conceptually intriguing as a perspective of the study

of the syntax and semantics in the design of programming languages.

This thesis contains both published and unpublished work, a structure of this the-

sis is summarised here:

• Chapter 2 is based on the paper Primrose: Selecting Container Data Types by

Their Properties, which is published at The Art, Science, and Engineering of Pro-

gramming, Volume 7 ;

• Chapter 3 is based on my unpublished work conducted during my internship

at Huawei R&D;

13

• Chapter 4 is based on the paper Shoggoth: A Formal Foundation for Strategic

Rewriting, which is published at Proceedings of the ACM on Programming Lan-

guages, Volume 8, Issue POPL;

• Chapter 5 is the conclusion of this thesis.

Chapter 2

Specifications, All Too Specific

Selecting Container Data Types byTheir Properties

‘Then you should say what you mean’, the March Hare went on.

‘I do’, Alice hastily replied; ‘at least — at least I mean what I say — that’s

the same thing, you know.’

‘Not the same thing a bit’, said the Hatter.

— Lewis Carroll “Alice’s Adventures in Wonderland”

Prologue

P
eople often try to say what they mean, however, there is always a gap

between what they say and what they really mean — they do not mean what

they say. Likewise, programmers often try to encode what they meant for a

computer to do, however, there is always a gap between what they encode and what

they really want a computer to execute — they do not mean what they encode.

One observation is that in an implementation of an application, what an appli-

cation developer encodes tends to be “all too specific” compared to what they have

modelled in their mind. Take a container type example which is illustrated in later

sections, when an application developer wants to use a unique container in an ap-

plication, the application developer means that the container does not contain any

duplicated elements. However, the application developer often has to encode such

a required container as a concrete data structure, such as a tree, a hash table, or a

15

16 Chapter 2. Specifications, All Too Specific

list without duplicated element etc. By choosing a concrete encoding, application

developers no longer just express what they mean, but additionally commit to cer-

tain performance characteristics or memory consumption which may or may not be

desirable for their applications.

Hence, in this chapter, we design a programming framework facilitating appli-

cation developers to better express what they mean for a computer to execute by

writing declarative specifications instead of concrete and fixed implementations. We

believe that such a framework enables better automation and optimisation as it gives

opportunities to a tool, such as a compiler, to select or generate the best performing

implementation according to the specification provided by an application developer.

2.1 Introduction

Container data types, such as sets, lists, and trees, represent collections of data ubiq-

uitous in everyday programming (Cormen et al., 2009). Virtually all programming

languages provide a variety of container implementations in their standard libraries.

Much work has been done to design better abstractions, improve performance

and verify correctness for container data types. However, a crucial problem for appli-

cation developers using containers still exists: when choosing a container data type,

application developers are forced to select a concrete implementation that comes with

certain theoretical complexity and practical performance tradeoffs.

For example, consider representing a mathematical set, i.e., where each element

should occur at most once. In C++, we must choose between std::set, usually im-

plemented as red-black trees (Bayer, 1972), and std::unordered_set, implemented

as a hash table. The hash-based implementation was added to the C++ standard in

2011, as the C++ standard has strict complexity requirements preventing the ordinary

std::set to be implemented as the (often faster) hash table. Many blog posts and dis-

cussions (Orr, 2019; Wicht, 2012; Cechner, 2014; Edouard, 2020; Ankerl, 2019) report

on the performance of various C++ containers, showing the community’s interest and

the need for external guidance that the language itself does not provide.

In other languages, the situation is similar. Rust provides two container imple-

mentations, HashSet and BTreeSet, expecting application developers to make an ex-

plicit choice between them. Scala’s complex collection library features abstract inter-

faces, such as the Set trait, abstracting over many implementations such as HashSet

and TreeSet. But when creating an instance of Set, a default HashSet implementation

2.1. Introduction 17

is chosen regardless of the suitability of this implementation choice for the usage

pattern of the application.

These examples demonstrate a general problem: Application developers are forced

to overspecify, by having to select a concrete implementation, where we generally

would like application developers to be shielded from low-level implementation de-

tails. Application developers should primarily care about the abstract behaviour of the

containers in their application, and not how this is achieved. The compiler, or a dedi-

cated tool, should identify those containers that satisfy their functional requirements,

and select the best implementation automatically.

In this chapter, we propose an automated tool: Primrose, which allows application

developers to specify the expected behaviours and programming interfaces of con-

tainers as properties. Syntactic properties specify the required programming interface

of the container and are expressed as traits of the underlying programming language.

Semantic properties specify the expected behaviour of the container and are written as

logical predicates used as refinements of the container type. Primrose automatically

selects the set of valid implementations for which the library specifications, written by

the library developers as pre- and post-conditions of the container operations, satisfy

the specified syntactic and semantic properties using an SMT solver. Finally, Primrose

ranks the valid library implementations based on their runtime performance.

To select the best container implementation, firstly, those container implemen-

tations which meet the functional requirements of the application developer must

be determined, and then those valid container implementations must be evaluated

based on non-functional requirements. While Primrose does include functionality

for ranking based on benchmarks, the focus of this study is on the first of these two

problems. There are many existing sophisticated techniques for selecting based on

non-functional requirements, and they are highly complementary with Primrose.

In this work, we apply verification and formal methods techniques, including re-

finement types, formal library specifications, and SMT solvers, in an innovative way

to raise the level of abstraction for developers, freeing them from the burden of choos-

ing container implementations, and opening up the possibility to automatically im-

prove the performance of applications.

To summarise, this study makes the following contributions:

• We present Primrose (section 2.3), a language-agnostic tool for selecting valid

container implementations (section 2.6) based on properties (section 2.4) used to

describe their behaviour and programming interface, and ranking them based

18 Chapter 2. Specifications, All Too Specific

on their performance.

• We show a new application of refinement types not—as previous work did—for

verification purposes, but to raise the level of abstraction for developers and

to improve the runtime performance of applications with container data types

(section 2.4).

• We develop a new methodology to specify container libraries, amenable to our

selection process, making use of existing formal methods work such as data

abstraction and Hoare logic (section 2.5).

• We show the feasibility of Primrose, selecting container implementations that

satisfy various properties from a Rust library of eight container types with li-

brary specifications. We validate container implementations against specifica-

tions and evaluate the efficiency of the selection process (section 2.7).

2.2 Motivation

Suppose as part of a larger application, we want to find and store all the elements of

a larger collection, but without duplicates. We might, for example, use the result of

this function to count the number of unique elements or process the elements further,

now with the guarantee that each element in the returned collection is unique.

An easy way to implement this is to return a container that only permits unique

elements. We might think of a set, however, as discussed in section 2.1, this requires

a choice: Which concrete implementation of the abstract idea of a mathematical set

should we use?

Figure 2.1a shows a Rust code snippet computing a container uniqueElements that

contains the unique elements of the original input sequence. The application devel-

oper must choose a concrete container implementation, such as HashSet in line 1, but

other valid choices would be Rust’s BTreeSet (line 2), or perhaps a custom UniqueVect

(line 3) container, which stores all elements in a vector but ensures there are no du-

plicates, or some other FancySetImplementations (line 4). Whether a container im-

plementation is valid is determined by the application developer’s functional require-

ments. Our uniqueness requirement, for example, is not met by the Rust HashMultiSet

(line 5). If the application developer also required elements to be stored in a particular

order, this would also rule out the HashSet implementation.

2.2. Motivation 19

1 type Set<I> = HashSet<I>;

2 // type Set<I> = BTreeSet<I>;

3 // type Set<I> = UniqueVect<I>;

4 // type Set<I> = FancySetImpl<I>;

5 // type Set<I> = HashMultiSet<I>; ?

6

7 let mut uniqueElements

8 = Set::new();

9 for val in input.iter() {

10 uniqueElements.insert(val); }

Rust

(a) In Rust, application developers must choose a

concrete container implementation with poten-

tially surprising performance implications.

1 property unique {

2 \c -> (for-all-elems (\a ->

3 (unique-count? a c)) c) };

4 type UniqueCon<I> = {

5 c <: ContainerT | unique c };

6

7 let mut uniqueElements

8 = UniqueCon::new();

9 for val in input.iter() {

10 uniqueElements.insert(val); }

Primrose

Rust

(b) Using Primrose, developers describe the con-

tainer’s expected behaviour via properties and the

best valid implementation is selected.

Figure 2.1: Selecting the unique elements of a sequence by inserting the elements into a set.

Many programming techniques exist to abstract over multiple concrete imple-

mentations of a general concept. In object-oriented languages, abstract classes enable

hiding multiple implementations behind a common interface. Similar features exist

in other languages under different names, such as, traits (e.g., in Rust and Scala), pro-

tocols (e.g., in Swift), interfaces (e.g., in Java), and type classes (e.g., in Haskell). All

these techniques allow developers to use multiple concrete implementations, such as

HashSet and BTreeSet, with a single abstract type, which we might call Set. How-

ever, these types are deliberately abstract, meaning that we cannot instantiate them

directly: When creating such a type, a developer must commit to a specific concrete

implementation, requiring the developer to look underneath layers of abstraction to

make an informed decision. Thus, these abstraction techniques do not free develop-

ers from considering low level details and they are not powerful enough to express

semantic requirements: developers cannot specify their functional requirements di-

rectly, but merely provide a common syntax enabling the use of multiple implementa-

tions. With such an abstract container type Set, we cannot express that each concrete

implementation is required to contain no duplicate elements. Similarly, with an ab-

stract type Stack, we cannot state that the last-in-first-out property is respected by

the push and pop operations.

Figure 2.1b shows the same problem of selecting unique elements, but expressed

using Primrose. Application developers specify their functional requirements—in this

20 Chapter 2. Specifications, All Too Specific

0 200 400

0

50

100

Data size (MB)

T
i
m

e
(
s
)

BTreeSet

HashSet

UniqueVec

0 200 400

0

1,000

2,000

3,000

Data size (MB)

H
e
a
p

a
l
l
o

c
a
t
i
o

n
s

(
M

B
)

BTreeSet

HashSet

UniqueVec

Figure 2.2: Runtime performance (left) and memory consumption (right) of three container

implementations for storing unique elements of an input sequence from 2.1a. The custom

UniqueVec implementation ensures elements to be unique lazily on access. It is the fastest

implementation, outperforming HashSet and BTreeSet from the Rust standard library, while

consuming less memory than HashSet.

case, that the container must contain unique elements—as a semantic property. This

semantic property is expressed in lines 1–3 in the Primrose specification language

as a logical predicate written as a lambda expression. The property is used to refine

the container data type in lines 4 and 5. Refinement types have long been used as

a technique for program verification—including container types (Vazou et al., 2013).

Here, we use refinement types in a new way, allowing programmers to express the

expected behaviour of a container, and freeing them from having to make a (poten-

tially difficult) implementation choice. The remaining code remains unchanged: we

can simply use the refined type in line 7. Primrose preprocesses the code from fig-

ure 2.1b, identifies all valid container implementations from a library of containers,

and generates a program equivalent to figure 2.1a with the best container implemen-

tation inserted automatically.

However, which is the best container implementation? This depends on the non-

functional requirements of the application: Often developers care about fast runtime

performance, also, for example, an application might require a low memory footprint.

Figure 2.2 shows the performance and memory consumption for three different im-

plementation choices. Perhaps surprisingly, a custom UniqueVec implementation that

uses a vector and lazily ensures that the stored elements are unique, by sorting the

vector and removing duplicates on access, outperforms the Rust built-in containers

HashSet and BTreeSet. In addition, it is also the best choice for machines with lim-

ited memory. Choosing the best container implementation is not always straight-

forward, particularly as theoretical complexity of operations can sometimes be mis-

2.3. Overview 21

Figure 2.3: The workflow of Primrose: Property specifications (top left), written and used by

the application developer, are used to check which library specifications (top right), written by

library developers, satisfy them. Valid implementations (marked with a green check marks),

are then ranked by their performance (bottom).

leading in the presence of practical effects such as cache-friendliness. Primrose se-

lects implementations satisfying developers’ functional requirements and opens up

opportunities to automatically choose the most desired implementation according to

non-functional requirements.

2.3 Overview

Figure 2.3 gives an overview of the design of the Primrose selection tool. Using Prim-

rose, the application developer writes code in terms of an abstract type, and a property

specification describing the syntactic and semantic properties they expect this type

to satisfy. The syntactic properties take the form of traits and the semantic properties

take the form of type refinements. To write a program, the developer only speci-

fies what functional properties must be satisfied by the required container, and does

not have to commit to a particular implementation. In this example, the developer

specifies that they require a container (the syntactic property ContainerT) where all

elements are unique (the semantic property unique). We discuss property specifica-

tions in detail in section 2.4.

22 Chapter 2. Specifications, All Too Specific

Figure 2.4: Two steps of selecting valid container implementations by checking library spec-

ifications against syntactic and semantic property specifications

Given this code as input, Primrosewill, acting as a preprocessor, generate copies of

the input code where the abstract type is instantiated into a valid concrete implemen-

tation that satisfies the expected properties. It determines which implementations are

valid by consulting library specifications, which are provided by library developers.

These specifications abstract over concrete container implementations and provide a

summary of their externally observable semantics. For each implementation, the li-

brary specification contains the pre- and post-conditions of each operation in terms of

an abstract list model. We discuss library specifications in more detail in section 2.5.

In our example in figure 2.3, the library specification of the Vec<T> type indicates

that it is not a suitable choice for UniqueCon<T>, as it does not satisfy the required se-

mantic property unique. Figure 2.4 gives a more detailed description of the selection

process. The first step is the syntactic filtering where Primrose selects implementa-

tions that satisfy the syntactic property ContainterT. In our example, all four imple-

mentations satisfy such a syntactic property. The second step is the semantic filtering

where Primrose selects implementations that satisfy the semantic property unique.

Primrose rules out Vec<T>. We use a satisfiability modulo theories (SMT) solver for

the semantic filtering step in the selection process, which we discuss in section 2.6.

Figure 2.3 shows at the bottom a simplified version of the generated programs.

For each valid concrete implementation, a piece of program is generated by rewriting

a property specification into the container type of a chosen concrete implementa-

tion. All generated programs are ranked by Primrose and the application program-

mer can then pick the best performing one. Note that in order to make figure 2.3

concise, we only show a simplified version of the generated programs with selected

implementations that does not reflect how traits constrain available operations for

interacting with the container type. In our implementation, we ensure that only the

container operations that the application developer specifies with syntactic proper-

2.3. Overview 23

ties are accessible in the generated program. Our current prototype of Primrose fo-

cuses on ensuring the functional correctness of selecting container implementations

based on desired properties. Nevertheless, we have implemented a simple process

that ranks valid implementations by their runtime performance. Rankings by other

non-functional metrics could easily be added to our design. We provide discussion

about code generation and ranking in section 2.6.4.

UsingRosette as theCommonLanguage for Specifications and Selection The

“solver-aided programming language” Rosette (Torlak and Bodı́k, 2013; Torlak and

Bodik, 2014) is used as the common language in Primrose for the formal parts. Rosette

is chosen for Primrose due to its convenient interface to the Z3 SMT solver and the

straightforward translation from Primrose property specifications into Rosette. Prop-

erty specifications are used as verification conditions when selecting implementations

by checking against library specifications which are directly encoded in Rosette. The

selection process is performed by interacting with the SMT solver via Rosette.

Portability of Primrose Currently, we choose Rust as the target language to im-

plement our idea. Application developers write the property specifications as a part of

their Rust programs and Primrose generates Rust code after processing specifications.

However, Primrose could easily be ported to many other languages, since property

specifications, library specifications, and the process of selecting implementations are

all language-agnostic and not attached to Rust’s particular type system or language

features. Adapting property specifications into other languages only requires such

languages to have a construct similar to Rust’s traits, such as traits in Scala and inter-

faces in Java, allowing us to model syntactic properties. It would be straightforward

to add new backends to Primrose to generate code in these languages. Our library

specifications are, by design, an abstraction over implementation details, describing

the intended semantics of container operations irrespective of their implementation.

This means we can trivially adapt these specifications to container libraries from other

languages, so long as our specifications remain an abstraction of the new implemen-

tations. Thus, we anticipate that Primrose could easily be adapted to produce code

in other languages with sufficient support for data abstraction, such as Java, Scala,

Swift, or C++.

24 Chapter 2. Specifications, All Too Specific

2.4 Property Specifications

The application developer specifies the desired behaviours of their required container

with a property specification, for example, for the type UniqueCon from figure 2.3:

1 Primroseproperty unique

2 { \c -> (for-all-elems (\a -> (unique-count? a c)) c) }

3 type UniqueCon<T> = {c <: (ContainerT) | (unique c)}

We first define the semantic property unique using a predicate. In our specification

language, such predicates have type Con⟨𝜏⟩ → Bool, where Con⟨𝜏⟩ is a placeholder

that is resolved into a concrete container type by the selection process. The com-

binator for-all-elems is part of a library enabling application developers to write

predicates for individual container elements. The predicate unique-count? holds if

and only if the given element occurs exactly once in the container. These combina-

tors and predicates are explained in section 2.4.2. One may notice that the predicate

unique-count? relies on equality being able to be done on elements in the container.

Currently, a runtime error will be produced if the equality of elements are not defined.

We further discuss the potential improvement of such a design in section 2.8.

With the defined semantic property unique, we can then declare the container type

UniqueCon<T>. The first part of the declaration specifies the syntactic property that

must be satisfied by the container type, in the form of the trait ContainerT. Specifi-

cally, c <: (ContainerT) says that the type of the container c must implement the trait

ContainerT, which specifies a set of basic container operations. The second part of the

declaration refines our container type by the predicate unique, stating that the prop-

erty must be invariant across all container operations. Properties may also be com-

Literals 𝑙 := true | false

Terms 𝑡 := 𝑙 | 𝑥 | 𝜆𝑥 . 𝑡 | 𝑡 𝑡
Refinement 𝑟 := 𝑡 | 𝑟 ∧𝑟

Container Type Declarations 𝑐 := {𝑡 <: 𝐵 | 𝑟 }
Simple Types 𝜎 := Bool | 𝑇 | Con⟨𝜎⟩

Types 𝜏 := 𝜎 | 𝜏 → 𝜏 | ∀𝑇 <: 𝐵. 𝜏

Bounds 𝐵 := trait name | 𝐵 , 𝐵

Figure 2.5: The syntax of property specifications. 𝑇 is the type variable, ranging over element

types of the target language, which is Rust in this case.

2.4. Property Specifications 25

posed. For multiple syntactic properties, we specify a list of traits (c <: (T1, T2)) that

the container type implements. For multiple semantic properties, we use conjunction,

i.e. ((p1 c) and (p2 c)).

Figure 2.5 shows the syntax of the Primrose property specification language. For-

mally, the specification language is a variant of the polymorphic 𝜆-calculus (Reynolds,

1974; Girard, 1986), with restrictions on the use of polymorphism to enable implicit

type inference (Hindley, 1969; Milner, 1978). This type system guarantees termina-

tion, making specifications easier to analyse and straightforward to translate into

SMT verification conditions in Rosette. The translation into Rosette is straightfor-

ward, as terms in the Primrose property specification language (literals, variables,

lambdas, and function application) are translated into their counterparts in the func-

tional Rosette language.

Listing 2.1: The implementation of a container trait

1 Rustpub trait ContainerT<T> {

2 fn len(&self) -> usize;

3 fn contains(&self, x: &T) -> bool;

4 fn is_empty(&self) -> bool;

5 fn insert(&mut self, elt: T);

6 fn clear(&mut self);

7 fn remove(&mut self, elt: T) -> Option<T>;}

2.4.1 Syntactic Properties as Traits

In our Primrose prototype, we encode syntactic properties as Rust traits, specifying

the operations needed by the application developer to interact with a container. Traits

are defined in Rust and lifted into our property specification language. For instance,

listing 2.1 shows the trait ContainerT introduced above.

By writing c <: ContainerT, the application developer indicates that they expect

the container type selected by Primrose to include implementations for all operations

in the trait ContainerT. Thus, after executing Primrose, UniqueCon<T> will be resolved

into a concrete container type that implements the trait ContainerT.

As mentioned, we can also declare a container type that satisfies multiple syntactic

properties. For instance, suppose that in addition to ContainerT, we would like our

container to also satisfy the syntactic property IndexableT:

1 Rustpub trait IndexableT<T> {

2 fn first(&self) -> Option<&T>;

26 Chapter 2. Specifications, All Too Specific

3 fn last(&self) -> Option<&T>;

4 fn nth(&self, n: usize) -> Option<&T>;

5 }

With just ContainerT, there is no way to observe the ordering of elements in the

container, but with IndexableT there is, as we can now select elements based on their

position. By composing our new syntactic property IndexableT with ContainerT we

can now specify a container of unique elements where the order can be observed:

1 Primrosetype UniqueIndexableCon<T> =

2 { c <: (ContainerT, IndexableT) | (unique c) }

Semantic properties, such as unique, must be invariant across all operations from

all syntactic properties required of the container.

2.4.2 Semantic Properties as Predicates

As mentioned, semantic properties are predicates that are used to construct refine-

ments for container types; each declared container type in the form {𝑣 <: 𝐵 | 𝑟 }
is a refinement type, i.e. a type circumscribed by a logical predicate (Freeman and

Pfenning, 1991). When the predicates are in SMT-decidable logic, they can be stati-

cally checked (Bierman et al., 2010). Such techniques are used in programming lan-

guages like Liquid Haskell and F*, where they are used to facilitate verification of

program correctness. For instance, in Liquid Haskell, we may define a refinement

type UniqueList representing a list of unique elements as:

1 Liquid Haskell{-@ measure unique @ -}

2 unique :: (Ord a) => [a] -> Bool

3 unique [] = True

4 unique (x:xs) = unique xs && not (S. member x (elts xs))

5 {-@ type UniqueList a = {v:[a] | unique v} @ -}

While our syntax for type refinements strongly resembles Liquid Haskell, our re-

finement types are slightly different, and serve a different purpose. Firstly, Liquid

Haskell’s refinements are attached to a concrete type, in this case a list (written [a]),

whereas our refinements are attached to an abstract container type, which is then re-

solved by Primrose into a concrete implementation. Secondly, Liquid Haskell uses

type refinements for the purpose of correctness: If a list is declared to have type

UniqueList, the Liquid Haskell verifier will check that it satisfies the predicate unique.

The notUniqueList shows that it will report an error at compile time if a given list

contains duplicates.

2.4. Property Specifications 27

1 Liquid Haskell{-@ notUniqueList :: UniqueList Int @ -}

2 notUniqueList ::[Int]

3 notUniqueList = [3, 1, 2, 3]

Our work instead uses type refinements to specify the semantic requirements of the

application developer to guide selection of valid concrete implementations. Once all

valid implementations have been found, Primrose simply selects the implementation

providing the best performance for the application developer. In short, rather than

to aid verification, we use refinement types to help application developers optimise

their programs. We give more details on the selection process in section 2.6.

Combinators and Predicate Functions Demonstrated by our examples, Prim-

rose provides a set of combinators and predicate functions to facilitate writing of

property specifications. These combinators and predicate functions are defined in

Rosette and then imported into our property specification language. In the semantic

property unique, the combinator for-all-elems is used to specify that the predicate

unique-count? must hold for all elements inside the container. The type of the combi-

nator for-all-elems is Con⟨𝜏⟩ → (𝜏 → Bool) → Bool, meaning this combinator takes

in two arguments, the first of which is a container and the second of which is a pred-

icate on the elements of that container, and eventually returns a boolean value.

For the purposes of checking, we represent containers Con⟨𝜏⟩ abstractly in Rosette

as lists. We discuss this list abstraction and justify it in section 2.5. With such a list ab-

straction, we are able to straightforwardly implement our for-all-elems combinator

with a list fold operation:

1 Rosette(define (for-all-elems c fn)

2 (foldl elem-and #t (map (lambda (a) (fn a)) c)))

We also provide some combinators for applying relations between elements in a

container. For instance, the combinator for-all-consecutive-pairs:

for-all-consecutive-pairs : Con⟨𝜏⟩ → (𝜏 → 𝜏 → Bool) → Bool (2.1)

Unlike for-all-elems, this combinator gives a binary relation between elements, and

checks that this relation holds between any two consecutive elements in a container.

With the combinator for-all-consecutive-pairs and the predicates geq? and leq?,

we can define properties like ascending and descending, which specify particular or-

derings of elements in a container:

1 Primroseproperty ascending { \c -> (for-all-consecutive-pairs c leq?) }

28 Chapter 2. Specifications, All Too Specific

2 property descending { \c -> (for-all-consecutive-pairs c geq?) }

Besides the set of combinators and predicate functions predefined in Primrose,

application developers may also provide customised functions by providing Rosette

definitions and importing them into our property specification language.

Composition of semantic properties As shown in figure 2.5, we can compose

semantic properties in a container type declaration with conjunction. For instance,

to declare a container type with elements arranged in strictly ascending order, i.e.,

both unique and ascending properties must hold, we can write the following:

1 Primrosetype StrictlyAscendingCon<T> =

2 { c <: (ContainerT) | ((unique c) and (ascending c)) }

The conjunction and is directly translated into a conjunction operation in Rosette.

2.4.3 The Dependencies between Semantic Properties and Syn-

tactic Properties

All semantic properties we have seen so far have been invariants across all opera-

tions, but some semantic properties relate to specific operations given by syntactic

properties. For instance, when specifying a stack container type providing operations

push and pop with the expected last-in-first-out (LIFO) property, on top of the trait

ContainerT specifying basic container operations, we need to define a trait specifying

operations push and pop, namely StackT:

Listing 2.2: The trait StackT specifying operations push and pop

1 Rustpub trait StackT<T> {

2 fn push(&mut self, elt: T);

3 fn pop(&mut self) -> Option<T>;

4 }

Secondly, we define the semantic property lifo for containers that implement StackT:

Listing 2.3: The semantic property LIFO

1 Primroseproperty lifo { \c <: StackT -> (forall \x. pop (push c x) == x) }

Unlike previously, this semantic property includes a requirement that the given con-

tainer implements the trait StackT, enabling us to refer to the operations pop and push

inside the semantic property. In this definition, forall is a combinator with type:

forall : ∀𝑥 . (𝑥 → Bool) → Bool (2.2)

2.5. Library Specifications 29

This combinator is implemented with the forall procedure defined in Rosette’s li-

brary, which serves as a construct for creating universally quantified formulae.

Armed with the trait StackT and the semantic property lifo, we can combine all

these elements and declare our stack type as follows:

1 Primrosetype StackCon<T> = {c <: (ContainerT, StackT) | (lifo c)}

In the next section, we will discuss how library developers write specifications for

their container implementations.

2.5 Library Specifications

Library specifications abstract over Rust container implementations, providing a clear

definition of intended semantics of each operation, without respect to performance or

implementation details. This approach allows us to select container implementations

by simply checking their library specifications, rather than their full implementa-

tions, against the properties specified by the application developer. Moreover, using

specifications which are abstracted from implementations makes Primrose easy to

repurpose for programming languages other than Rust, as the same specifications

would apply, with minimal or no modification, to container libraries written in any

other language.

By encoding these specifications into property based tests, which validate con-

tainer implementations against their library specifications (section 2.7.1), we ensure

the selected implementations indeed satisfy a required property specification. Since

these library specifications form a functional correctness specification for each op-

eration, they could also be used in future as the basis of full functional correctness

verification with a verification framework for Rust (Jung et al., 2017a), but this is out

of scope for Primrose.

2.5.1 The Basic Design of Library Specifications

Library specifications of concrete container implementations are developed based on

Hoare logic (Hoare, 1969a). For each concrete container implementation, we provide

a set of Hoare triples, one for each operation. A Hoare triple of the form {𝜙} op {𝜓 }
states that if the precondition 𝜙 holds and the operation op is executed, then the post-

condition𝜓 will hold. These conditions are predicates on the state of the program. In

30 Chapter 2. Specifications, All Too Specific

our case, the state contains the container, plus any other inputs and outputs of the

operation op.

As mentioned in section 2.3, we model the container as a list in Rosette for Prim-

rose’s library specifications. The list is a model to convey the intended semantics, and

does not proscribe anything about the implementation — the implementation is free

to represent data in any chosen structure. For example, a set data type may be imple-

mented with a binary search tree, but will still be specified with a list. These model

lists are a simple abstraction, easy to analyse, with which all container operations can

be specified.

Library Specifications Convey the Intended Semantics for Implementations
It is important that all possible executions of a concrete implementation should be

captured by its library specification. Otherwise in the process of selecting implemen-

tations by checking if their library specifications match the required semantic prop-

erty, Primrose could select an unsatisfying implementation. More formally, a proof

of functional correctness of an implementation w.r.t. its specification would take the

form of a data refinement (de Roever and Engelhardt, 1998), where each value of the

concrete container type is related to our list model by an abstraction function 𝛼 , and

our specification on lists is shown to contain all possible behaviours of the concrete

implementation using a forward simulation:

𝛼−1
;op(C) ⊆ op(A);𝛼−1

(where ; is forward composition of relations

and 𝛼−1
is the inverse relation of 𝛼)

◦ ◦

• •

op(A)

𝛼

op(C)

𝛼⊆

Here, op(C) denotes the concrete implementation of our operation op, represented

as a relation from inputs to outputs. The abstract operation op(A) is the maximal re-

lation satisfying the Hoare triple given in our library specification, and 𝛼 is a suitable

abstraction function that flattens a concrete container into a list.

If a forward simulation is shown for all operations, we can then conclude that each

possible execution with the concrete container implementation has a corresponding

execution with an abstract list, thus the specification accurately captures the imple-

mentation’s semantics.

For instance, a binary search tree 𝑇 can be abstracted to a sorted list 𝐿 by an

abstraction function inorder that does an in-order traversal. For each operation in-

teracting with 𝑇 , there exists a corresponding operation at the abstract level defined

2.5. Library Specifications 31

using 𝐿. Take the operation insert(T,x), which inserts an element 𝑥 into a binary

search tree𝑇 . We can abstract such an operation to insert(L,x) which inserts 𝑥 at the

right location in a sorted list. The relation between these two operations is shown by

this diagram:

◦ ◦

• •

insert(L,x)

inorder

insert(T,x)

inorder⊆

In this work, we specified four container implementations from Rust’s standard li-

brary (Vec, LinkedList, HashSet, BTreeSet) and four custom container implementations

(SortedVec, LazySortedVec, UniqueVec, LazyUniqueVec) by abstracting them into a list

model. As we discuss in section 2.5.5, library specifications abstract over some im-

plementation details, and, thus, Vec and LinkedList share the same specifications, as

do the eager and lazy SortedVec and UniqueVec implementations. For each specifica-

tion, we define a suitable abstraction function for forward simulation which, while

not needed for selection, is used for property-based testing to justify that a concrete

implementation satisfies the intended semantics described by its library specification.

Completeness of Library Specifications While it is important to ensure that li-

brary specifications indeed convey the intended semantics of the implementation,

completeness of library specifications is also important. Without completeness, Prim-

rose could possibly rule out perfectly valid implementations because it cannot prove

that the required semantic properties are preserved for an operation of which the

specification is incomplete. For instance, specifying a BTreeSet which is a concrete

container implementation that contains unique elements sorted in ascending order

with a model list that is a sorted but not unique would be incomplete. With such an

incomplete specification, although a BTreeSet is a valid strictly ascending container,

it would be ruled out by Primrose because its library specification does not satisfy the

property StrictlyAscendingCon.

Our approach easily ensures completeness when each operation is specified by

a deterministic model operation. Forward simulation states that every execution of

the concrete implementation has a corresponding execution in the abstract operation,

while determinism states that such correspondence is one-to-one, i.e., each abstract

execution also has a corresponding concrete one. Thus, just as forward simulation

states that each property established for an abstract operation applies also (via the

32 Chapter 2. Specifications, All Too Specific

inverse of the abstraction function 𝛼−1
) to a concrete implementation, completeness

states that each property established for a concrete implementation applies (via the

abstraction function 𝛼) to the abstract operation. With both completeness and for-

ward simulation, we ensure that all valid implementations and only the valid imple-

mentations are selected by Primrose.

There are many other available approaches for modelling library specifications,

for instance, the axiomatic approach used in algebraic specifications for abstract data

types (Wirsing, 1990), specifying the behaviour of operations as a set of equational

axioms that relate various operations. However, it is hard to ensure the completeness

of algebraic specifications, as it is hard to capture all behaviours of all operations by

a set of equations.

Other Approaches without Manually Written Library Specifications There

are other alternative approaches for selecting valid concrete implementations directly

using the property specifications, via property-based testing or bounded model check-

ing. Comparing to our current approach requiring library developers to manually

provide library specifications, these alternative designs provide better automation

and avoid potential issues caused by inaccurate or incomplete library specifications.

They can be seen as a future direction to be studied. However, our current design still

has the advantage of being language agnostic as the selection process is not deeply

embedded into the syntax or type system of any particular programming language.

In addition, the selection process of our design with manually written specifications

is potentially faster than alternative approaches involving property-based testing or

bounded model checking as a part of the selection process. Since in our design,

property-based tests are not required to be executed in the selection process, instead,

they only need to be conducted when library specifications are modified.

2.5.2 The Library Specification of A LinkedList

Rust’s LinkedList is a doubly-linked list. The abstraction function to convert it into a

logic list is straightforward: Collect all nodes’ values with previous and next pointers.

Firstly, we specify the insertion operation, LinkedList::insert, of which the type

signature is:

1 Rustfn insert(&mut self, elt: T) {...}

2.5. Library Specifications 33

Since variables in Rosette are immutable, in the corresponding abstract insertion op-

eration, we alter the type to return a new list instead of altering the list in-place
1
:

1 Rosetteabs-insert: List<T> -> T -> List<T>

We can then provide the specification of LinkedList::insert with respect to its cor-

responding abstract operation, the maximal relation satisfying the Hoare triple:

{𝑥𝑠0. true} abs-insert {𝑥𝑠0 𝑥 𝑥𝑠. 𝑥𝑠 = model-insert 𝑥𝑠0 𝑥} (2.3)

Here, 𝑥𝑠0 refers to the initial value of the container, 𝑥𝑠 refers to the resultant container,

and 𝑥 is the element we insert. The function model-insert is defined in Rosette on lists:

1 Rosette(define (model-insert xs x) (append xs (list x)))

The postcondition states that we expect applying the insertion operation to a con-

tainer to produce the same result as the result produced by model-insert function.

In library specifications, defining such model operations is a common technique to

simplify writing postconditions.

Similarly, we also provide the specification for the operation LinkedList::contains:

1 Rustfn contains(&self, x: &T) -> bool {...}

In our corresponding abstract operation, in addition to the boolean value indicating

whether the given element x is present or not, the input container is also returned. As

we would like to express that the input container is not mutable, its value remains un-

changed after this operation. Also, since the underlying value with type T is given by

an immutable reference &T, in the abstract operation we treat the immutable reference

&T as simply T. The signature of the abstract operation is shown below:

Listing 2.4: The signature of the abstract operation corresponding to LinkedList::contains

1 Rosetteabs-contains: List<T> -> T -> (List<T>, bool)

The Hoare triple that serves as the specification of LinkedList::contains is:

{𝑥𝑠0. true} abs-contains {𝑥𝑠0 𝑥 𝑥𝑠 𝑟 . (𝑥𝑠,𝑟) = model-contains 𝑥𝑠0 𝑥} (2.4)

Note that in this specification, the model operation model-contains defined in list-

ing 2.5 has the same type signature as the abstract operation shown in listing 2.4. It

also returns a pair of values: the output list, which is always equal to the input list,

and a boolean value indicating if the element is present in the list.

1
Rosette is untyped, but this is morally the type signature.

34 Chapter 2. Specifications, All Too Specific

Listing 2.5: The model operation for checking an element’s containment

1 Rosette(define (model-contains xs x)

2 (cond [(list? (member x xs)) (cons xs #t)]

3 [else (cons xs #f)]))

Because model-contains returns the unchanged list, it specifies that the operation

LinkedList::contains should not change the list.

The library specification of the list removal operation is slightly more complicated,

we use T? to denote that a type may be null to express Rust’s Option<T> type, which

is the return type of LinkedList::remove. The type signature of LinkedList::remove is

shown below:

1 Rustfn remove(&mut self, x: T) -> Option<T> {...}

This operation removes the first occurrence of an element from the given linked list

and returns it. If the linked list does not contain the element, None is returned and the

list remains unchanged. The signature of the corresponding abstract operation is:

1 Rosetteabs-remove: List<T> -> T -> (List<T>, T?)

The model removal operation has the same signature as the abstract operation. We

return null in Rosette for the None case:

1 Rosette(define (model-remove xs x)

2 (cond [(list? (member x xs)) (cons (remove x xs) x)]

3 [else (cons xs null)]))

Again, we return a pair of the resulting list and the element being removed. Then we

provide the library specification of LinkedList::remove:

{𝑥𝑠0. true} abs-remove {𝑥𝑠0 𝑥 𝑥𝑠 𝑟 . (𝑥𝑠,𝑟) = model-remove 𝑥𝑠0 𝑥} (2.5)

To provide a complete specification of LinkedList, the library developer must ensure

that each operation of the LinkedList is specified by a trait, and for each operation in

each trait the LinkedList implements, specifications similar to the above are provided.

2.5.3 The Library Specification of A BTreeSet

For the LinkedList it is intuitive to use a logic list as a model, as they are both lists.

However, even for non-linear structures such as trees, we can still use logic lists as a

model. Rust’s BTreeSet is a set implemented using a b-tree. All elements are unique

and arranged in ascending order. Thus, our list model of the b-tree is simply a sorted

2.5. Library Specifications 35

list in ascending order, where uniqueness of elements is preserved. The abstraction

function 𝛼 that converts the BTreeSet to our list model is simply an in-order traversal.

The first example to be illustrated is again the specification of the insertion oper-

ation with signature:

1 Rustpub fn insert(&mut self, value: T) {...}

The signature of the abstract insert operation on our model lists is the same as for

LinkedList::insert. The specification of abs-insert for BTreeSet, however, differs

from that of LinkedList, as we must maintain ordering and uniqueness of elements:

{𝑥𝑠0. 𝑥𝑠0 = dedup (sort 𝑥𝑠0 <)} abs-insert {𝑥𝑠0 𝑥 𝑥𝑠. 𝑥𝑠 = model-insert 𝑥𝑠0 𝑥}
(2.6)

Again, 𝑥 is the element to be inserted, and 𝑥𝑠0 and 𝑥𝑠 are lists modelling the container

(via the in-order traversal function 𝛼) before and after the abs-insert operation re-

spectively. We place an assertion 𝑥𝑠0 = dedup (sort 𝑥𝑠0 <) in the precondition requir-

ing that the model 𝑥𝑠0 to be a sorted list of unique elements. While this precondition

should always be satisfied by an in-order traversal of a valid b-tree, we do not want

our abstraction to constrain the implementation’s behaviour if the data invariants of

the b-tree are violated — given a malformed b-tree, the implementation should be free

to return any result. Because the semantics of abs-insert are the maximal relation

satisfying this specification, this abstract operation contains all possible behaviours

of the concrete implementation if this precondition is violated. The model-insert here

is simply an insertion operation defined on a sorted list of unique elements:

1 Rosette(define (model-insert xs x) (dedup (sort (append xs (list x)) <)))

We can also provide specifications for abstract operations that observe the order-

ing of elements in a BTreeSet, such as those operations from the IndexableT trait, since

there is a one-to-one correspondence between each element’s position in a BTreeSet

and its position in the model list abstracted from the BTreeSet. For instance, we pro-

vide the specification of the operation BTreeSet::first, which is the operation ob-

taining the first (and also the minimal) element of a BTreeSet with signature:

1 Rustfn first(&self) -> Option<&T> {...}

We again provide the signature of its corresponding abstract operation:

1 abs-first: List<T> -> (List<T>, T?)

Like LinkedList::contains in listing 2.4, this type includes a returned list, as Primrose

does not consider the immutability of &self in the Rust type signature above. We

36 Chapter 2. Specifications, All Too Specific

again include the requirement that the container is unchanged in the specification:

{𝑥𝑠0. 𝑥𝑠0 = dedup (sort 𝑥𝑠0 <)} abs-first {𝑥𝑠0 𝑥𝑠 𝑥 . (𝑥𝑠,𝑥) = model-first 𝑥𝑠0}
(2.7)

Here, model-first is defined as a function that returns the first element of the list, if

present, along with the list itself:

1 Rosette(define (model-first xs)

2 (cond

3 [(null? xs) (cons xs null)]

4 [else (cons xs (first xs))]))

As before, our precondition includes the assumption that the model 𝑥𝑠0 abstracted

from the BTreeSet contains unique elements that are sorted in ascending order.

2.5.4 The Library Specification of A HashSet

A tree implementation of a set maintains its elements in a fixed ascending order, and

the ordering of our abstract list model simply reflects the ordering of the elements

in the tree. However, some container implementations do not have a fixed ordering

of elements. For instance, the HashSet in Rust is a set implementation using a hash

algorithm which is randomly seeded. Despite the implementation storing elements

in an unspecified order, we may still safely use a sorted, ascending list of unique ele-

ments as our abstract model of a HashSet: Our abstraction function 𝛼 merely collects

all elements from the HashSet into a list and then sorts them into ascending order.

Since the ordering of elements in our list is now different from the ordering of el-

ements in the HashSet, the developer may specify properties relating to the ordering

of elements, such as ascending, that are not satisfied by the implementation, but are

trivially satisfied by the abstraction function. This would lead to HashSet being con-

sidered a valid choice for an ascending container. However, Primrose prevents this by

the checking of syntactic properties. The HashSet type does not implement any trait

with operations that allow the ordering of its elements to be observed.

Therefore, in applications for which the ordering of elements is important, HashSet

is never a valid choice. The selection process of valid implementations according to

traits is discussed in section 2.6.1.

If a library developer decides to write a HashSet with operations that leak ordering,

they can provide a nondeterministic library specification for such a HashSet that can

still be used by Primrose in the selection process.

2.6. Selecting and Ranking Implementations 37

For the operations defined on HashSet and BTreeSet, such as insert, remove and

contains, the specifications of both implementations are identical—after all, the only

observable difference between the implementations is performance—but the specifi-

cation for HashSet lacks operations that observe the ordering of its elements, such as

first or last.

2.5.5 Abstracting Over Implementation Details with Library

Specifications

Since the basic container operations of both HashSet and BTreeSet have the same ex-

ternally observable behaviour, we can use the same specifications for both imple-

mentations. There are many such cases where specifications can be re-used: For

instance, we provide two implementations of an ascending vector: SortedVec and

LazySortedVec. SortedVec maintains the ascending order of elements inside the vector

on insertion (eager) and LazySortedVec instead sorts elements whenever the vector

is accessed (lazy). Since both implementations share the same externally observable

behaviour, we use the same model for both implementations: A list with elements

sorted in ascending order. Also, their operations are specified with the same set of

model operations. For the eager implementation, the abstraction function 𝛼 simply

collects all its elements into a list. For the lazy implementation, in addition to col-

lecting all elements into a list, the abstraction function 𝛼 also sorts elements into

ascending order.

2.6 Selecting and Ranking Implementations

Before ranking container implementations by performance or other non-functional

metrics, Primrose must first identify all implementations that comply with the prop-

erty specifications provided by the application developer.

2.6.1 Selecting Container Implementations Satisfying Syntac-

tic Properties

The first step of selecting valid implementations is to select concrete container imple-

mentations from the library that satisfy required syntactic properties in a property

38 Chapter 2. Specifications, All Too Specific

specification, which is straightforward. Primrose simply picks concrete container im-

plementations that implement the traits required by the property specifications.

Listing 2.6: A property specification composing semantic and syntactic properties: ascending,

ContainerT, and IndexableT

1 Primroseproperty ascending { \c -> (for-all-consecutive-pairs c leq?) }

2 type AscendingIndexableCon<T>

3 = { c <: (ContainerT, IndexableT) | (ascending c) }

For instance, shown in listing 2.6, suppose that in a property specification, an ap-

plication developer requires a container type implementing traits ContainerT and

IndexableT, the elements of which are sorted in ascending order.

In Rust’s collections library, there are four concrete container implementations

Vec, LinkedList, BTreeSet, and HashSet, where Vec, LinkedList, and BTreeSet imple-

ment both required traits while HashSet does not implement the trait IndexableT.

Clearly, HashSet does not satisfy all required syntactic properties. Therefore, HashSet

is ruled out as a possible implementation for AscendingIndexableCon<T>. The im-

plementation for AscendingIndexableCon<T> is then selected from the remaining Vec,

LinkedList and BTreeSet types by checking if the library specifications satisfy the

required semantic property, ascending.

2.6.2 Selecting Container Implementations Satisfying Seman-

tic Properties

After gathering container implementations with required syntactic properties, Prim-

rose selects the ones that satisfy the required semantic properties from these candi-

dates. As discussed in section 2.5, our library specifications abstract over the con-

crete container implementations, describing their externally observable semantics in

a compact and tractable format. Primrose performs this selection process by encoding

the property specifications as verification conditions against the candidates’ library

specifications in Rosette, to be discharged by an SMT solver in Rosette’s backend.

To generate the required verification conditions, Primrose first translates the re-

quired semantic properties, given in the specification language of Primrose, into defi-

nitions in Rosette that can be used by the solver. The container type Con<T> is resolved

into the model type used in our library specifications, i.e., a logic list. For instance,

the generated code according to the property ascending from listing 2.6 is:

1 Rosette(define ascending (lambda (c) (for-all-consecutive-pairs c leq?)))

2.6. Selecting and Ranking Implementations 39

With these Rosette definitions, Primrose generates verification conditions. For

example, to check if BTreeSet is ascending, Primrose checks that the semantic prop-

erty ascending is an invariant held across each operation defined for BTreeSet. For

instance, for the insertion operation, specified by listing 2.6 in section 2.5.3, it checks

that the property ascending is preserved by any execution that satisfies its precondi-

tion and its postcondition:

∀ 𝑥𝑠0 𝑥𝑠 𝑥 .
𝑥𝑠0 = dedup (sort 𝑥𝑠0 <) 𝑥𝑠 = model-insert 𝑥𝑠0 𝑥

ascending 𝑥𝑠0 ⇒ ascending 𝑥𝑠

(where: ∃ 𝑥𝑠0. ascending 𝑥𝑠0 ∧𝑥𝑠0 = dedup (sort 𝑥𝑠0 <))

Figure 2.6: The rule for checking the operation BTreeSet::insert against ascending

Recall that 𝑥𝑠0 and 𝑥𝑠 are model lists abstracted from the BTreeSet, specifically, xs0

is the model for the input BTreeSet, and xs is the model for the resulting BTreeSet

of BTreeSet::insert. The model operation model-insert specifies the behaviour of

BTreeSet::insert’s corresponding abstract operation. Given the rule shown in fig-

ure 2.6, the solver attempts to find a counterexample, i.e., for all input models xs0 that

satisfy the semantic property ascending, the solver tries to find a resulting model of

the operation that does not satisfy the property. If there is no such counterexam-

ple found, the solver will conclude that the operation BTreeSet::insert satisfies the

property ascending.

This search for a counterexample is parameterised by a model size, which denotes

the maximum size of the input list xs0 considered by the solver. This parameter is con-

figurable by the application developer using Primrose, and its impact on Primrose’s

selection time is evaluated in section 2.7.2.

The rule contains a side condition stating that there should be no contradiction

between the required semantic property and the precondition of the operation. This

side condition is important for ensuring that the solver does not search for a coun-

terexample in an empty search space then falsely conclude that the absence of the

counterexample means that the property holds. The side condition requires that there

exists at least one model that satisfies both the precondition of the operation and the

required semantic property. Without the side condition, the rule is unsound.

In general, the library specification of each operation takes the form:

{𝜙 (𝑥𝑠0, ®𝑢)} op {𝜓 (𝑥𝑠0,𝑥𝑠, ®𝑣)} (2.8)

40 Chapter 2. Specifications, All Too Specific

where 𝑥𝑠0 is the (abstract list model of the) input container and 𝑥𝑠 is the result of the

operation op. The sets of variables ®𝑢 and ®𝑣 denote any additional variables involved

in the specification, such as additional inputs or outputs to the operation. The general

form of the verification condition Primrose generates for the SMT solver, to check if

an operation op satisfies a property 𝑃 , is given in figure 2.7.

∀ 𝑥𝑠0 𝑥𝑠 ®𝑢 ®𝑣 .
𝜙 (𝑥𝑠0, ®𝑢) 𝜓 (𝑥𝑠, ®𝑣)

𝑃 (𝑥𝑠0) ⇒ 𝑃 (𝑥𝑠)
(where: ∃ 𝑥𝑠0 ®𝑢. 𝑃 (𝑥𝑠0) ∧𝜙 (𝑥𝑠0, ®𝑢))

Figure 2.7: The rule for checking an operation against a property

For our BTreeSet example, Primrose checks these verification conditions for each

operation of ContainerT and IndexableT—the traits implemented by BTreeSet. Since the

property ascending is satisfied by all operations, Primrose concludes that the BTreeSet

is a valid implementation for the required container type AscendingIndexableCon<T>.

The same checks are also run for the other two candidates that satisfy the required

syntactic properties (Vec and LinkedList) but they do not satisfy the required seman-

tic property ascending. Therefore, Primrose concludes that only BTreeSet is a valid

implementation for the required container type AscendingIndexableCon<T>.

2.6.3 Handling Dependencies Between Semantic and Syntactic

Properties

In this section, we discuss how Primrose selects library implementations with seman-

tic and syntactic properties, such as the stack container StackCon<T> from section 2.4.3,

where the operations push and pop specified in the trait StackT (listing 2.2) are made

available to the semantic property lifo (listing 2.3).

Firstly, Primrose generates the definition of semantic property lifo in Rosette,

where the operations push and pop are now replaced with their model operations:

1 (define lifo (lambda (c) (forall (list x)

2 (equal? (cdr (model-pop (model-push c x))) x))))

The specific model operations model-pop and model-push are supplied to this definition

for each candidate type considered by Primrose. Recall that our library specifications

state that these model operations exactly specify the intended behaviour of every

library operation, which means that these model operations can be used here to ex-

press assertions about the interaction between operations such as push and pop. Such

2.6. Selecting and Ranking Implementations 41

assertions will, by virtue of forward simulation, also apply to the concrete implemen-

tations of the data type.

To illustrate the selection process, suppose a library developer provides two im-

plementations that implement push and pop. The first one is a last-in-first-out imple-

mentation, where the library specification of push and pop is:

{𝑥𝑠0. true} abs-push
1
{𝑥𝑠0 𝑥 𝑥𝑠. 𝑥𝑠 = model-push 𝑥𝑠0 𝑥} (2.9)

{𝑥𝑠0. true} abs-pop
1
{𝑥𝑠0 𝑥𝑠 𝑥 . (𝑥𝑠,𝑥) = model-pop 𝑥𝑠0} (2.10)

And the model operations are defined as:

1 Rosette(define (model-push-front xs x) (append xs (list x)))

2 (define (model-pop xs)

3 (cond [(null? xs) (cons xs null)]

4 [else (cons (take xs (- (length xs) 1)) (last xs))]))

With these two model operations, the solver can verify that this library specification

satisfies the semantic property lifo.

By contrast, the second implementation is a first-in-first-out implementation. The

library specification of push and pop appears similar:

{𝑥𝑠0. true} abs-push
2
{𝑥𝑠0 𝑥 𝑥𝑠. 𝑥𝑠 = model-push 𝑥𝑠0 𝑥} (2.11)

{𝑥𝑠0. true} abs-pop
2
{𝑥𝑠0 𝑥𝑠 𝑥 . (𝑥𝑠,𝑥) = model-pop 𝑥𝑠0} (2.12)

However, the model operations have different semantics:

1 Rosette(define (model-push-end xs x) (append (list x) xs))

2 (define (model-pop xs)

3 (cond [(null? xs) (cons xs null)]

4 [else (cons (take xs (- (length xs) 1)) (last xs))]))

With these two model operations, the solver correctly concludes that this library spec-

ification does not satisfy the semantic property lifo, and Primrose does not consider

this implementation as a valid choice for the container StackCon<T>.

2.6.4 Code Generation and Ranking Implementations by Per-

formance

Once Primrose has selected the valid container implementations, it will generate a

Rust program for each valid candidate by resolving the property specification into

the selected container implementation. In figure 2.3, we show a simplified version

42 Chapter 2. Specifications, All Too Specific

of generated programs where property specifications are directly replaced with con-

crete implementations, in practice Primrose carefully generates Rust’s trait objects to

encapsulate the concrete implementation and exposing only those operations in Rust

traits which are specified as syntactic properties.

As a proof-of-concept implementation, the current Primrose prototype ranks the

generated Rust code for each valid implementation by executing all candidates and

measuring their runtime on some test input data. We anticipate adopting more so-

phisticated ranking techniques, such as the ones discussed in the related work, in the

future. Our existing prototype of Primrose focuses on enabling application devel-

opers to specify their functional requirements, and automating the selection of valid

container implementations.

2.7 Evaluation

For Primrose to be feasibly used as a programming tool, it must be practical to ensure

that the container implementations indeed satisfy their library specifications, and

the selection process itself must not take a prohibitively long time. The evaluation

demonstrates feasibility in both of these aspects. All measurements are conducted on

a MacBook Pro with 32 GB of RAM and a 2.4 GHz 8-Core Intel Core i9 processor.

2.7.1 Correctness of Container Implementations w.r.t Their

Library Specifications

To ensure the selected implementations are correct, we validate our Rust container

library implementations against the library specifications using property-based test-

ing (Claessen and Hughes, 2000). We use the framework proptest (AltSysRq, 2022)

for encoding and performing the tests.

Firstly, we encode the model list with its operations in Rust. Specifically, we en-

code the model list from Rosette as an immutable ConsList (Stokke, 2022) in Rust,

along with all its operations. Then we implement the inversion of the abstraction

function 𝛼−1
for each container implementation. Like Chen et al. (2017, 2022), we en-

code the forward simulation obligation for the library specification of each operation

as assertions in a test.

For each test, 100 test inputs are randomly generated. For our library with eight

container implementations, in total 7200 inputs are tested in 7.315 seconds. We con-

2.7. Evaluation 43

3 5 7 9

0

50

100

Model size upper bound

T
i
m

e
(
s
)

ConT ConT+IndxT ConT ConT+IndxT

Unique Ascending

Unique+Ascending Descending

LIFO/ConT+StackT

2 4 6 8

10

20

Library size

Figure 2.8: Primrose’s efficiency of selecting implementations for different properties

clude that with the existing testing framework, we are able to validate the functional

correctness of our container implementations w.r.t. our library specifications effi-

ciently, ensuring that implementations selected by Primrose are correct.

2.7.2 Evaluation of Primrose’s Selection Time

For Primrose to be practical, it must perform selection with a reasonable time, even

though, as a pre-processing tool, it does not have to be invoked on every compilation

run. After the initial invocation, it will only be invoked if the property specification

or any library specifications are changed.

The efficiency of the SMT-based selection time is mainly determined by two fac-

tors: the model size and the library size, which together define the search space in

which the solver attempts to find a counterexample. If a counterexample is found,

Primrose will conclude that the library specification does not satisfy the required

semantic property. We expect the solver time to grow linearly with the number of

container implementations from which we select (library size) and non-linearly with

the model size, which is the length of the input model list to the abstract operation,

as this should grow the search space polynomially.

Figure 2.8 shows the measurements of Primrose’s selection time. The left side

shows that the selection time, for a fixed library size of eight implementations, in-

creases with the model size. The right side shows that for a model with upper-bound

size of five, the selection time increases linearly when the library size is increased.

The complexity of the property specifications and the number of satisfying imple-

44 Chapter 2. Specifications, All Too Specific

mentations are also factors that affect the efficiency of the selection, since they de-

termine how difficult it is for the solver to find a counterexample. For example, since

the definition of lifo has constant complexity, the model size and library size do not

affect its selection time as much as for properties with high polynomial complexity

such as unique and ascending. None of our example containers satisfy the property

descending. As SMT solvers are faster at finding a counterexample than exhaustively

proving that no counterexample exists, the selection time for descending is faster than

for ascending, despite both properties having the same algorithmic complexity.

The selection process is always completed within 30 seconds using a model with

upper-bound size of three and the full library of eight implementations. Although

an increase in model size raises selection time quickly, in practice, a model with size

of more than five is not required to admit counterexamples for most conceivable se-

mantic properties that the application developer may write. This is based on the small

scope hypothesis in Alloy (Jackson, 2012). We conclude that Primrose is feasible for

medium-size libraries.

2.8 Discussion of Limitations

Primrose’s prototype implementation has some limitations. Primrose currently cov-

ers properties of sequential containers like lists and sets, and we have not yet looked

into associative containers like maps and dictionaries. However, we believe it should

be possible to characterise them with the same technique: application developers

using syntactic properties to describe desired operations and semantic properties to

state predicates that should be held by keys and values, and library developers pro-

viding library specifications using a list model with key-value pairs as elements.

The other limitation of our current implementation is that we implicitly require

all elements inside a container to have some ordering for them to be comparable

using leq and geq. Similarly, the predicate unique-count? requires that all elements

inside a container to have equality being defined. Currently, a runtime error will

be produced to notify application developers when equality comparisons cannot be

done on elements or the ordering of elements cannot be compared by leq and geq. In

the future, we should allow application developers to state if the elements inside the

container are comparable, have equality being defined or have ordering by enriching

the syntax and type system of our property specification language, such as specifying

that an element’s type T has an Equality trait or an Ordering trait.

2.9. Related Work 45

2.9 Related Work

Refinement Types Refinement types, first introduced for ML (Freeman and Pfen-

ning, 1991), are types enriched with logical predicates, often from an SMT-decidable

logic (Bierman et al., 2010), allowing programmers to express rich logical constraints

in the type system and automatically check them. Refinement types have recently

been implemented in languages such as Haskell (Vazou et al., 2013, 2014) and F* (Swamy

et al., 2016), supporting very rich specifications suitable for verifying the correctness

of programs. While the syntax of Liquid Haskell inspires our design of the syntax

of property specifications, we use refinement types not for verification, but for data

abstraction, allowing application developers to specify their semantic requirements

for the selection process.

Abstract Data Types and FormalMethods An abstract data type is characterised

by the operations in its interface, rather than the details of its implementation (Liskov

and Zilles, 1974). This data abstraction allows a separation of concerns, freeing ap-

plication developers from having to consider the internal implementation details of

a data type, instead allowing them to consider only the externally observable seman-

tics of each operation. Our work advances this area of data abstraction, allowing

abstraction to be maintained even when creating an instance of the data type, so that

programmers can work on the level only of requirements, without needing to con-

sider implementation details.

Existing work in algebraic specifications (Guttag, 1976; Wirsing, 1990) provide a

formal definition of abstract data types where the semantics of operations are speci-

fied with a set of equational axioms. By contrast, our library specifications are model-

based. As mentioned in section 2.5.1, this allows us to easily ensure completeness of

library specifications. There exist many formal modelling tools that facilitate model-

based specification of abstract data types and software systems more generally, for

example Z (Spivey, 1989), VDM (Jones, 1990), and most recently Alloy (Jackson, 2006).

While these tools allow application developers to formally analyse and explore the

software design space, including formal reasoning about abstract data types, they

work purely on the level of models and do not typically connect to actual code, as

Primrose does.

Performance-Oriented SelectionTechniques Many techniques for design space

exploration, particularly machine learning techniques, have been applied in compil-

46 Chapter 2. Specifications, All Too Specific

ers (Fursin et al., 2011) to selected performance optimization techniques (Cavazos

et al., 2007) using various characteristics as features that are then used to rank the

performance of multiple implementations (Siegmund et al., 2012). Many dynamic se-

lection techniques have been developed for assisting the selection of performant con-

tainers, based on different evaluation criteria such as workload data (Costa and An-

drzejak, 2018), architectural concerns (Jung et al., 2011) and runtime metrics (Shacham

et al., 2009). In addition to dynamic container selection, CoCo (Xu, 2013) is tool al-

lowing safe online switching.

None of these techniques, however, provide a general scheme to allow application

developers to specify desired behaviour, instead, they purely focus on selecting be-

tween multiple, pre-known, valid container implementations. Such techniques could

be incorporated into Primrose’s ranking process, and are highly complementary with

our work.

2.10 Conclusion

This study presents Primrose, a language-agnostic tool for selecting the best perform-

ing container implementation that satisfies a set of desired properties. Semantic prop-

erties provide application developers with a powerful, novel abstraction to describe

the expected behaviour of a container as a refinement of the container data type.

Semantic properties nicely complement syntactic properties (i.e., traits), allowing de-

velopers to specify the programming interface and behaviour of a container without

committing to a concrete implementation. Primrose automatically selects the set of

valid container implementations for which the library specifications, written by the

developers of container libraries, satisfies the specified properties. Finally, Primrose

ranks the valid library implementations based on their runtime performance.

To summarise, this study makes the following contributions:

• We present Primrose, a language-agnostic tool for selecting valid container data

type implementations based on properties used to describe their behaviour and

programming interface, and ranking them based on their performance.

• We show a new application of refinement types not—as previous work did—for

verification purposes, but to raise the level of abstraction for application devel-

opers and to improve the runtime performance of applications with container

data types.

2.10. Conclusion 47

• We present formal specifications of Rust container data types from the standard

library and customised implementations and used them to validate the imple-

mentations by property-based testings. These specifications could also be used

in the future to formally verify the correctness of their Rust implementations.

We have applied techniques from verification and formal methods in a new way,

raising the level of abstraction by freeing developers from the burden of choosing con-

crete container implementations. Instead, application developers can specify their ex-

pected behaviour using semantic properties—a highly general abstraction technique.

We provide a methodology to specify container libraries with library specifications,

and describe our mechanism to check semantic properties against these specifications

using SMT solvers. We implement Primrose for Rust and specify eight Rust container

implementations. We show that Primrose is a practical tool that can be feasibly inte-

grated into a programmer’s workflow.

Primrose is already effective at selecting data types based on functional require-

ments, but significant future work remains in selecting and ranking based on non-

functional metrics. We intend to significantly improve the ranking method used by

Primrose by using more sophisticated techniques, including machine-learning-based

solutions and techniques that optimise for multiple metrics, such as run time and

memory use. Integrating Primrose with a dynamic technique that changes container

implementations on-the-fly based on runtime performance measurements would also

be interesting.

Epilogue

Addressing the issue that application developers are forced to over-specify what they

mean in a program by committing to concrete implementations, the solution proposed

by this chapter, which is also the core theme of this chapter, is to design declarative

specifications. Library specifications specify the functional correctness of implemen-

tations, while property specifications including both syntactic specifications and se-

mantic specifications form an abstraction over concrete implementations, allowing

application programmers to better express what they want a computer to do.

In the end, I would like to enclose this chapter with some high-level observa-

tions and reflections. There is often a trade-off between concise abstractions and rich

expressiveness. The concrete implementations of containers convey both functional

and non-functional requirements. Abstracting over these implementations, we have

48 Chapter 2. Specifications, All Too Specific

seen that there are concise and accurate ways to express functional requirements as

specifications, which can be used to validate the container implementations. How-

ever, unlike implementations, these specifications can not able be used to express the

non-functional requirements since it is not an easy task to accurately specify these

non-functional requirements, such as algorithmic time and space complexities. In

terms of expressiveness, we have observed that there is often a trade-off: Abstractions

have the advantage of better representing the characteristics of functional properties

in a concise way. However, because of their nature of omitting details of implemen-

tations, abstractions are not expressive enough to characterise non-functional prop-

erties like runtime performance. Therefore, other compile-time and runtime optimi-

sations techniques other than purely formal specifications are necessary for guiding

the performance-orientated selection process.

Chapter 3

Oxidising Remote Procedure Calls

A Universal Method Invocation Library for Rust

The building is circular. The apartments of the prisoners occupy the cir-

cumference. You may call them, if you please, the cells. The apartment

of the inspector occupies the centre, you may call it if you please the

inspector’s lodge. To cut off from each prisoner the view of every other,

the partitions are carried on a few feet beyond the grating into the inter-

mediate area, such projecting parts I call the protracted partitions. These

windows of the inspector’s lodge open into the intermediate area, in the

form of doors, in as many places as shall be deemed necessary to admit

of his communicating readily with any of the cells.

— Jeremy Bentham “Panopticon or the Inspection-House”

Prologue

R
ecall that in chapter 1, we have briefly discussed the conceptual ques-

tion that we would like to ask: How to intuitively understand distributed

programs using the same conceptual model as monolithic programs? It

would be beneficial to view a monolithic programs as an abstraction of distributed

program, specifying the intended behaviours of the invocations and resource usage

in the distributed program while abstracting away message-passing details, since it

49

50 Chapter 3. Oxidising Remote Procedure Calls

would make the process of migrating monolithic programs into a distributed setting

straightforward and simplify the process of implementing a distributed system.

In this chapter, we discuss in detail our design, implementation and formalisation

of a universal method invocation (UMI) library in Rust, which supports location trans-

parency, allowing a monolithic program to be migrated into a distributed design with

minimal syntactic modification and preserves the semantics of the original program.

As a metaphorical illustration, the core idea of our attempt for conceptually mod-

elling and understanding distributed programs as monolithic programs resembles a

panopticon, where the distributed resource management is governed by a monolithic

design of Rust’s ownership and borrow checking system.

3.1 Introduction

Distributed computing has extensive application in areas such as cloud computing,

big data processing, web services, and blockchain systems, driving the development of

modern, large-scale, and resilient software systems. Distributed systems offer many

significant advantages such as scalability, fault tolerance, resource sharing, and geo-

graphical distribution.

However, compared to monolithic systems, distributed systems are more com-

plex and challenging to design, implement, test and debug due to the necessity for

coordination, synchronisation, and communication among distributed components.

Therefore, it is common practice to start with a monolithic design when implement-

ing a system, as this approach simplifies the initial implementation and deployment

process. Such a monolithic system needs to later be re-structured and migrated into

a distributed design when it needs to be expanded to a larger scale. However, it still

requires non-trivial effort to be put into the migration of a monolithic system into a

distributed design.

3.1.1 Contributions

To address these issues in the design and implementation of a distributed system as

well as migrating a monolithic systems into a distributed setting, we propose our de-

sign of a UMI library in Rust. The design of the UMI library shares the same underly-

ing idea of the remote procedural call (RPC) (Nelson, 1981), where a method invocation

on an object can be executed on a different node within the same network, abstracting

3.1. Introduction 51

over the underlying message-passing details. Such a design allows programmers to

model a distributed system focusing on what functional features are required instead

of how these functional features are achieved via complicated network communica-

tions. Moreover, it allows applications to be migrated from a monolithic design to

a distributed architecture without massive changes to source code or the needs of

high-level expertise in microservices. In addition, by choosing Rust as the language

for implementing the UMI framework, we are able to avoid distributed memory man-

agement hassles like distributed garbage collection while extending Rust’s memory

safety and data-racing free guarantees into the distributed setting.

In summary, we make following contributions:

• We provide a usable Rust implementation of the UMI framework (section 3.3).

• We formalise the structural operational semantics based on Pearce (2021)’s feath-

erweight Rust (FR) for a core calculus of monolithic Rust programs and dis-

tributed Rust programs written in the UMI framework (section 3.4).

• We prove a location transparency theorem: With the UMI framework, when a

monolithic program is deployed to multiple nodes, its semantics is preserved

(section 3.4.3).

3.1.2 Limitations

There are some limitations of this project worth mentioning upfront. Firstly, the UMI

framework does not handle network communication errors. Since technically it is

difficult to handle these errors in a distributed program while maintaining the same

interface of its monolithic counterpart without the language feature throwing and

handling exceptions. Also, we plan to integrate this framework within micro-services

platforms, where server errors are managed by cloud service providers. Supervision

strategies can be employed to take snapshots and restart from failures, ensuring these

issues do not pose a critical problem for the UMI framework’s design.

In addition, both the implementation and the formalisation of the UMI frame-

work are deterministic and sequential. In the current stage, such a design decision is

sufficient to demonstrate of core concepts of the UMI framework including location

transparency and memory safety. However, as potential future work, it would be nice

to model the UMI framework that accounts for concurrency.

52 Chapter 3. Oxidising Remote Procedure Calls

Moreover, there are limitations in the formal system we have presented, for in-

stance, functions and structs are missing. These issues are caused by the formal sys-

tem we build upon. Many different styles of formal systems of Rust have been sur-

veyed for this project however it is rather hard to find a formal system that models

sufficient core features of the surface language of Rust. We will discuss related for-

malisation of Rust in section 3.5. In order to have a better formalisation of our system,

it is required to have a better formalisation of the surface language of Rust, which is

out of the scope of this project.

Before stepping into the detailed discussion of the UMI library, in the next section,

we will give a high-level overview of remote procedure calls as well as Rust.

3.2 Background

In distributed computing, an RPC allows a method invocation to be executed on an-

other computer on a shared network. One application of RPCs is that in an object-

oriented programming paradigm, it enables a method to be invoked on an object

stored on a different machine and exchange data across the network. Such a remote

method invocation has the same encoding as a local invocation, without the pro-

grammer explicitly coding the details for the remote interaction. However, it is hard

to support location transparency, i.e., in most existing frameworks (e.g., Java RMI),

remote invocations do not have the same semantics as local invocations. In addition,

memory management is hard in a distributed setting, for example, distributed garbage

collection is complicated.

Rust (Klabnik and Nichols, 2018) is a high-level system programming language

which guarantees memory safety and prevents data races by its ownership system for

memory management and borrow checker for tracking object lifetime of all references

in a program during compilation. Since Rust’s semantics guarantees memory safety,

we can extend such guarantees to the distributed computing setting, allowing us to

design a RPC framework that provides safe remote method invocations.

3.2.1 Remote Procedure Calls

An RPC allows a computer program to request a service from another program lo-

cated in a different address space, which could be on the same machine or on a dif-

ferent machine across a network. It is a form of client-server communication, where

3.2. Background 53

the requesting program is the client, and the service-providing program is the server.

The basic idea behind an RPC system is to make a remote invocation appear like

a local invocation, abstracting away the underlying communication mechanisms like

message passing and network protocols and simplifying distributed computing by

providing a familiar programming model. When a client program calls a procedure,

an RPC system will handle the task of transferring the procedure call request to the

remote server, along with any necessary parameters or states. The server then exe-

cutes the requested procedure and sends the results back to the client.

RPCs are particularly useful in distributed systems, where different components

of an application are running on separate processes or machines. It allows these com-

ponents to communicate and share resources efficiently, as if they were part of a single

program. There are many common applications of RPCs. For instance, RPCs are used

in distributed file systems, such as Network File Systems (NFS), to enable clients to ac-

cess and manipulate files on remote servers transparently. In remote database access,

RPCs facilitate remote access to databases, allowing client applications to execute

queries and retrieve data from remote database servers. In designing web services,

RPCs form the basis of many web service protocols, such as SOAP (Simple Object

Access Protocol), which allows applications to communicate over the internet using

XML-based messaging. In modern microservices architectures, RPCs are often used

for inter-process communication between different microservices, enabling them to

collaborate and share functionality. In object-oriented programming, RPCs are com-

monly implemented as remote method invocations (RMI), enabling objects on differ-

ent machines to interact with each other. The core feature of RMIs is that objects can

interact with each other by invoking methods and passing data across the network.

This is the application domain that we focus on in this study.

3.2.2 Rust

As a system programming language with emphasises on safety, performance, and

concurrency, Rust is designed to prevent some common programming errors, such

as data races and dereferencing null pointers. Rust achieves these goals through its

distinctive features of the ownership system, borrow checking, and lifetimes.

In Rust, each value has a variable designated as its owner. Each value can only have

one owner at a time, and when the owner goes out of scope, the value is dropped, i.e.,

deallocated from memory. This ownership model ensures that resources are managed

54 Chapter 3. Oxidising Remote Procedure Calls

correctly without the need for a garbage collector. The ownership system is funda-

mental to Rust and serves as the basis for its memory safety.

Rust allows functions and data structures to create references to values without

taking ownership. This is called borrowing. When a value is borrowed, the original

owner cannot modify the value until the borrowing ends. The borrow checker is part

of Rust’s compiler, which ensures that references are used safely and do not result in

dangling pointers or other memory issues. Borrowing can be either mutable or im-

mutable, where mutable references have additional constraints to prevent data races

and undefined behaviour.

Lifetimes in Rust express how long references should be valid. They assist the

borrow checker in ensuring that references do not outlive the data they point to. Rust

uses lifetimes to prevent dangling references, which is important for memory safety.

Lifetimes are explicitly annotated or inferred. They work alongside the ownership

system and borrow checking to maintain memory safety and prevent data races.

With the design of the ownership system, borrow checking mechanism, and life-

times, Rust enforces strict memory safety guarantees, i.e., that all references point to

valid memory, without requiring a garbage collector. These features also ensure that

Rust programs do not have dace races by allowing only one mutable reference at a

time or multiple immutable references.

3.3 TheDesign and Implementation of the Rust UMI

Library

In the section, we present our implementation of the UMI framework as a library in

Rust. With such a library, a monolithic program can be migrated into a distributed

program while preserving the semantics of the original monolithic program.

3.3.1 Overview

To give a high-level overview of the design, in figure 3.1, we introduce an example

of migrating a monolithic program into a distributed setting, by adding the macros

provided by the UMI library. In this example program which allocates instances of

the struct A and calls methods on them, the macro #[proxy_me] implicitly translates

the declared type A from a struct that can only refer to local resources to an enum that

can either hold local resources or be a proxy that refers to resources held on a remote

3.3. The Design and Implementation of the Rust UMI Library 55

1 #[proxy_me]

2 struct A { arg: u32 }

3 impl A {

4 #[umi_init]

5 new(arg: u32) -> A { A {arg: arg} }

6 #[umi_struct_method]

7 by_value(&self, a: A) {...}

8 #[umi_struct_method]

9 by_ref(&self, &a: A) {...}

10 #[umi_struct_method]

11 by_mut_ref(&self, &mut a: A) {...}

12 ...

13 }

1 fn main() {

2 let a_remote =

3 remote!(addr, A::new(10));

4

5 let a_local1 = A::new(1);

6 let a_local2 = A::new(2);

7 let mut a_local3 = A::new(3);

8

9 a_remote.by_value(a_local1);

10 a_remote.by_ref(&a_local2);

11 a_remote

12 .by_mut_ref(&mut a_local3);

13 }

Figure 3.1: Migrating A Monolithic Application into A Distributed Setting with UMI

node. The initialisation method is translated by the macro #[umi_init] to create an

instance of the enum A instead of an instance of the struct A. Other methods are also

translated by macros to allow both an invocation on a local instance of A and an invo-

cation on a proxy of A. To create a proxy instance, the macro remote!(address, ...)

is used, while the syntax of the initialisation of a local instance is unchanged. The

invocations of the methods defined for translated struct A take the same form of the

invocation of those original methods. We have to use different macros to identify syn-

tactic scopes of different code blocks in a piece of Rust program to correctly produce

the corresponding translations.

An invocation on a proxy is encapsulated into a serialised message and sent to

the destination node of which the address is the address stored in the proxy, and then

the message is deserialised and the invocation is executed at the destination. After

the execution, the result of the invocation is again put into a serialised message and

passed back to the calling node to be deserialised.

3.3.2 The Design of the Translation

As we have seen in the example discussed above, the syntax of a monolithic program

is translated into a distributed program by a set of macros. For a declared struct, the

macro #[proxy_me] performs the translation:

struct𝐴 { fields }{ enum𝐴 { Local (fields),Remote (Address, ID, IsOwner) }

56 Chapter 3. Oxidising Remote Procedure Calls

where the Address is the type of address of the node which stores the resource of a

proxy, the ID is the identifier of a proxy’s resource in the resource table that will be

discussed in section 3.3.3, and IsOwner denotes whether a proxy is an owned reference

or a borrow reference. This macro can translates an enum to allow it to represent a

proxy by adding a new constructor which is the proxy:

enum𝐴 { variants }{ enum𝐴 { variants,Remote (Address, ID, IsOwner) }

The translation of a enum does not affect its initialisation method, however, the

translation of a struct requires its initialisation method to be changed accordingly

— instead of creating an instance of a type which is a struct, an instance of a Local

variant of an enum is created. For instance, in the example shown in figure 3.1, the

new(arg:u32) method is translated by #[umi_init] into:

1 new(arg: u32) -> A { A::Local {arg: arg} }

The macro #[umi_struct_method] performs the translation of other methods of a

struct. For instance, the method foo1(&self, a:A) is translated into:

1 fn foo1(&self, a: A) {

2 match &self {

3 Local(...) => { /* do something */ },

4 Remote(...) => { /* remote do something */ }

5 }}

Note that within the pattern matching block for the Remote variant, the invocation is

firstly put into a message and serialised. Then the serialised message is passed to the

address stored in the proxy, and gets deserialised and executed. The result is again

put into a message and get serialised. Once it is returned back to the original node,

the result is extracted from the deserialised message. Such a communication pro-

cess between nodes via sending and receiving serialisation/deserialisation messages

is completely generated by the macro, freeing programmers from dealing with the

message passing complexity.

As for a method of a translated enum, the macro #[umi_enum_method] adds an addi-

tional pattern matching block for the proxy variant to the existing pattern matching.

3.3.3 Resource Management

To be able to use the UMI library for executing programs that access and manipulate

memories of different nodes within a network, resources and computations need to

be made available to and well-managed by all nodes in the network.

3.3. The Design and Implementation of the Rust UMI Library 57

ID Resource

0 …

1 …

… …

Full Path Name Type Information

A::new u32, A

A::foo1 (&A, A), ()

… …

Figure 3.2: A resource table (L) and a method registration table (R)

Firstly, a node should be able to store resources owned by different machines and

deallocate those resources according to their lifetime. In Rust, if some resources are

owned by a reference on the same node, and the reference has reached the end of its

lifetime, these resources will be deallocated from the memory. With such a design,

resources that are not owned by any reference on the same node are automatically

deallocated. However, in our UMI library, while some resources on a node 𝑛1 are not

owned by any reference on the same node, they can be owned by a reference on a dif-

ferent node 𝑛2. Although these resources do not have a local owner, the deallocation

should not happen until the remote owner reaches the end of its lifetime. To achieve

this goal, on each UMI server, we design a resource table shown in figure 3.2 on the

left, which has the same lifetime as the server. We used it to identify and manage local

resources involved in remote computations. Note that the ID in an entry of the table

is the ID field in a corresponding proxy, which is globally unique. If a variable is cre-

ated locally, it will be put into the table once it is passed into a remote computation.

The entry will not be removed until the remote computation finishes. If a variable is

created via a remote call, it will be put into table on creation and will be deallocated

when its remote owner decides that it should be dropped.

Secondly, we need to make all nodes aware of all methods that can be invoked on

a proxy in order to make computations available on all nodes. To achieve this goal, we

use the register!(name, arg_types, return_type) macro to register all methods that

are available for remote invocations in a method registration table shown in figure 3.2

on the right. The method registration table holds the full path name, argument types,

and return type of methods. When a serialised invocation message, which takes the

form of a plain string, is received by a node, the method to be invoked is deserialised

and reconstructed according to the type information recorded in the registration table.

58 Chapter 3. Oxidising Remote Procedure Calls

3.3.4 Passing Remote Invocations via Messages

As briefly discussed in section 3.3.1 and section 3.3.3, remote invocations and results

of executions are implicitly communicated via serialised and deserialised messages

among nodes. We make use of the Serde (serde-rs, 2023) framework to serialise and

deserialise these messages and Rust data structures.

There are different types of messages for passing remote invocations. For instance,

a remote invocation sent to an receiving node is represented as an invocation mes-

sage which taking the form of Message::Invoke(fname, variables, invoke_op), where

fname is the full path name of the method, each variable is annotated with its owner-

ship information (owned or immutably/mutably borrowed), and invoke_op specifies

the ownership information of the return value. The result of the execution of a remote

invocation is passed back to the calling node via a return message taking the form of

Message::Return(return_var), where the return_var is also annotated with its own-

ership information. Another important type of messages is the deallocation message

which takes the form of Message::Drop(id), where the id corresponds to an entry key

in the resource table shown in figure 3.2. Such a message instructs some remotely

owned resources to be deallocated.

3.3.5 Extending Borrow Checking into Distributed Settings

To execute a deserialised remote method invocation on the node which receives the

invocation, the first step is to gather serialised data as well as the ownership infor-

mation of each variable involved in the method. In this step, we do not perform any

reconstruction of these variables; instead, variables are simply prepared in an appro-

priate format that can be reconstructed during the execution of the method. Such

an format is implemented as Argument, which keeps the information of the variables

related to borrow checking, and stores the data of the variable. The detailed imple-

mentation of this step is shown in listing 3.1, listing 3.2, and listing 3.3.

A serialised variable has a label indicating whether it is a piece of data copied or

moved from the caller (OwnedLocal), a remote reference owned by the caller (OwnedRemote),

a remote reference immutably borrowed by the caller (RefRemote), or a remote refer-

ence mutably borrowed by the caller (MutRefRemote).

As shown in listing 3.1, if a variable is serialised data, which is copied or moved

from the caller, it will be kept as serialised, since the deserialisation and reconstruction

process will happen during the invocation of the method (line 5 — line 6). If a variable

3.3. The Design and Implementation of the Rust UMI Library 59

is a proxy which is located at the receiver, then it will be obtained from the resource

table shown in figure 3.2. According to its ownership information, if it is moved, then

the corresponding entry will be removed from the resource table (line 7 — line 11).

Listing 3.1: Gathering variables from an invocation message: OwnedLocal and OwnedRemote

1 Message::Invoke(fname, variables, invoke_op) => {

2 let mut arguments: Vec<Argument> = Vec::new();

3 for v in &variables {

4 match v {

5 Variable::OwnedLocal(s) =>

6 { arguments.push(Argument::Serialised(s.clone())); },

7 Variable::OwnedRemote(serialise_remote, addr, id) => {

8 if addr == &local_address {

9 let (owned, is_ref) = mvtable.remove(id).unwrap().into_inner();

10 let arg_ref = Argument::Owned(owned);

11 arguments.push(arg_ref);

12 } else {

13 arguments.push(

14 Argument::Serialised(serialise_remote.to_string())); }},

15 ...}} ... }

If it is immutably borrowed, as shown in listing 3.2. then the corresponding entry

will be immutably borrowed from the table (line 5 — line 13).

Listing 3.2: Gathering variables from an invocation message: RefRemote

1 Message::Invoke(fname, variables, invoke_op) => {

2 let mut arguments: Vec<Argument> = Vec::new();

3 for v in &variables {

4 match v {...

5 Variable::RefRemote(serialise_remote, addr, id) => {

6 if addr == &local_address {

7 let borrow = mvtable.get(id).unwrap().borrow();

8 let ptr: *const (Box<dyn Any + Send + Sync>, bool) = &*borrow;

9 unsafe {

10 let back: &(Box<dyn Any + Send + Sync>, bool)

11 = ptr.as_ref().unwrap();

12 let arg_ref = Argument::Ref(&back.0, back.1);

13 arguments.push(arg_ref); }

14 } else {

15 arguments.push(

16 Argument::RemoteRef(serialise_remote.to_string())); }},

17 ...}} ... }

60 Chapter 3. Oxidising Remote Procedure Calls

If it is mutably borrowed, then the corresponding entry will be mutably borrowed

from the table and updated after the execution (line 5 — line 14).

Listing 3.3: Gathering variables from an invocation message: MutRefRemote

1 Message::Invoke(fname, variables, invoke_op) => {

2 let mut arguments: Vec<Argument> = Vec::new();

3 for v in &variables {

4 match v { ...

5 Variable::MutRefRemote(serialise_remote, addr, id) => {

6 if addr == &local_address {

7 let mut borrow_mut = mvtable.get(id).unwrap().borrow_mut();

8 let ptr: *mut (Box<dyn Any + Send + Sync>, bool)

9 = &mut *borrow_mut;

10 unsafe {

11 let back: &mut (Box<dyn Any + Send + Sync>, bool)

12 = ptr.as_mut().unwrap();

13 let arg_ref = Argument::MutRef(&mut back.0, back.1);

14 arguments.push(arg_ref); }

15 } else {

16 arguments.push(

17 Argument::RemoteMutRef(serialise_remote.to_string())); }

18 }}} ... }

If an argument is a proxy that is not located at the caller, as shown in three else-

cases demonstrated in listing 3.1 (line 12 — line 14), listing 3.2 (line 14 — line 16), and

listing 3.3 (line 15 — line 17), then the proxy will be passed into the method without

any additional modification.

Once the information about all variables is gathered and processed, the invocation

will be executed and the result will then be sent back to the caller. The implementation

of the execution of this invocation is shown in listing 3.4 and listing 3.5. The method

information, mainly ownership and type information of the arguments, and return

value of a method are retrieved from the registration table shown in figure 3.2 on

the right. During the execution of the method via f.call(arguments) shown in line

6, serialised arguments and boxed argument entries retrieved from the resource table

are reconstructed according to the registered type information.

The result of an execution is provided in two formats, serialised data and a boxed

data entry. These two formats are used according to the required ownership informa-

tion of the return value. As shown in listing 3.4, if the method produces an owned re-

sult annotated with InvokeOp::Owned, whether the serialised data res represents some

3.3. The Design and Implementation of the Rust UMI Library 61

local resources or a proxy, it will be kept as the serialised form and sent back via a

return message (line 8 — line 10). If the method is an initialisation call sent by the

macro remote!(...) annotated with InvokeOp::Init, the boxed entry data will be in-

serted into the resource table and a unique id will be generated. In the return message,

the address of the receiver, the id, and the ownership status which is true are included

for the caller to construct a proxy that owns such a data entry on the receiver (line

11 — line 16).

Listing 3.4: Executing an invocation and returning the result: Owned and Init

1 Message::Invoke(fname, variables, invoke_op) => { ...

2 let f: &str = &*fname;

3 match lrtable.get(f) {

4 Some(f) => {

5 let ((res, is_local), b) = f.call(arguments); // b is a reference

6 let res_message: Message;

7 match invoke_op {

8 InvokeOp::Owned => {

9 res_message = Message::Return(ReturnVar::Owned(res));

10 },

11 InvokeOp::Init => {

12 let id = (SystemTime::now(), m_id_gen.next());

13 // b is the resource

14 mvtable.insert(id.clone(), RefCell::new((b, false)));

15 res_message =

16 Message::Return(ReturnVar::OwnedInit(local_address, id, true));

17 }, ... }

18 response(stream, res_message);

19 },

20 None => { /* report unregistered function */ }}

21 }, ...

For a return value that is an immutably or mutably borrowed reference, as shown

in listing 3.5 there are two situations. If the borrowed reference is local to the receiver,

the reference itself will be inserted into the resource table identified by a generated

unique id. Such an id and the address of the receiver will be sent back to the caller

for creating an proxy that mirrors this borrowed reference (line 9 — line 13 and line

18 — line 22). However, if a borrowed reference is not local to the receiver, meaning

it already mirrors a reference on a different node, then it will not be stored in the

resource table, instead, the serialised version of it will be sent back to the caller in a

return message (line 14 — line 15 and line 23 — line 24).

62 Chapter 3. Oxidising Remote Procedure Calls

Listing 3.5: Executing an invocation and returning the result: Ref and MutRef

1 Message::Invoke(fname, variables, invoke_op) => { ...

2 let f: &str = &*fname;

3 match lrtable.get(f) {

4 Some(f) => {

5 let ((res, is_local), b) = f.call(arguments); // b is a reference

6 let res_message: Message;

7 match invoke_op { ...

8 InvokeOp::Ref => {

9 if is_local {

10 let id = (SystemTime::now(), m_id_gen.next());

11 mvtable.insert(id.clone(), RefCell::new((b, true)));

12 res_message =

13 Message::Return(ReturnVar::RefMirror(local_address, id));

14 } else {

15 res_message = Message::Return(ReturnVar::RefBorrow(res));

16 }},

17 InvokeOp::MutRef => {

18 if is_local {

19 let id = (SystemTime::now(), m_id_gen.next());

20 mvtable.insert(id.clone(), RefCell::new((b, true)));

21 res_message =

22 Message::Return(ReturnVar::MutRefMirror(local_address, id));

23 } else {

24 res_message = Message::Return(ReturnVar::MutRefBorrow(res));

25 }}}

26 response(stream, res_message);

27 },

28 None => { /* report unregistered function */ }}

29 }, ...

3.3.6 Extending Lifetime Management to Distributed Settings

Recall that in section 3.3.3, we have briefly introduced storing and deallocating re-

motely owned resources on a node. In this section we discuss the design and imple-

mentation of a remote deallocation in detail.

In a monolithic Rust program, when a variable that owns some resources reaches

the end of its lifetime, in most cases, out of a program’s scope, the resources it owns

will be automatically deallocated. We extend this feature to the distributed setting. As

illustrated in listing 3.6, when the given proxy a_proxy is initialised, some resources

3.3. The Design and Implementation of the Rust UMI Library 63

are allocated to the receiver node with the address addr (line 7). Although these re-

sources do not have an owner on the same node, they should not be deallocated until

its remote owner a_proxy reaches the end of its lifetime (line 10).

Listing 3.6: An example of a remote deallocation

1 // on caller

2 fn main() {

3 ...

4 // the data of a_proxy is in the table on the receiver with addr

5 // but it is owned by the caller and will be deallocated

6 // when its owner decides to drop it

7 let a_proxy = remote!(addr, A::new(10));

8 ...

9 a_proxy.foo1(...)

10 } // a_proxy is out of scope, its data on the remote machine is dropped

For monolithic programs, the deallocation is achieved via the drop method in the

destructor trait Drop, which in most cases is automatically implemented for Rust types.

We extend this drop method to handle the deallocation of remotely owned resources.

The implementation is shown in listing 3.7. When a proxy that owns some resources

on a node reaches the end of its lifetime, a serialised deallocation message is auto-

matically sent to the node that holds these resources.

Listing 3.7: The implementation of a remote deallocation

1 impl Drop for #name {

2 fn drop(&mut self) {

3 match self {

4 Self::Remote(addr, id, is_owner) => {

5 if is_owner.load(Ordering::Relaxed) {

6 let msg = Message::Drop(*id);

7 send(*addr, msg).unwrap(); }},

8 _ => {}

9 }}}

As shown below, once a deallocation message is received by the targeted receiver,

the entry with the corresponding id will be removed from the resource table (i.e., the

mvtable in the listing).

1 Message::Drop(id) => { mvtable.remove(&id); }

After presenting the design and implementation of the UMI library, in the next

chapter, we discuss the formalisation of core concepts of the UMI library base on

64 Chapter 3. Oxidising Remote Procedure Calls

formalised operational semantics of a core language of Rust, and sketch a proof of the

location transparency theorem stating that using the UMI framework, the translation

of a monolithic program into a distributed program preserves the semantics of the

original program.

3.4 The Operational Semantics

We first provide a small-step operational semantics of a core language of Rust based

on Pearce (2021)’s featherweight Rust (FR), which captures the core features of Rust

Term 𝑡 ::= let mut 𝑥 = 𝑡 ;𝑡 declaration

| 𝑤 := 𝑡 assignment

| 𝑡 ;𝑡 sequence

| () unit

| {𝑡} block

| box 𝑡 heap allocation

| &𝑤 immutable borrow

| &mut𝑤 mutable borrow

| #𝑤 move

| !𝑤 copy

| 𝑣 value

LVal 𝑤 ::= 𝑥 variable

| ∗𝑤 dereference

Value(V) 𝑣 ::= ⊥

| () unit

| 𝑖 integer

| 𝓁
•

owned reference

| 𝓁
◦

borrowed reference

Location 𝓁 ∈ A

Figure 3.3: The revised syntax of FR

3.4. The Operational Semantics 65

S : A⇀V×L

S | 𝓁 ↦→ (𝑣,𝑚) where: 𝓁 ∈ dom S (update)

S ⊗𝓁 ↦→ (𝑣,𝑚) where: 𝓁 ∉ dom S (extend)

Figure 3.4: The program state

including copy- and move-semantics, owned and immutably/mutably borrowed ref-

erences, and lexical lifetimes. We then present dFR, which extends FR to include dis-

tributed features of the UMI framework such as remote copy- and move-semantics as

well as remote references. We show that such an extension preserves the semantics

of FR, and therefore, the type safety claims of FR is preserved by dFR.

Note that the aim of this project is not to design a formal semantics or type system

of Rust, rather, we aim to utilise existing work which provide formal semantics ac-

companied with a type system with type safety proofs for a core surface language of

Rust (i.e., FR). Hence, here we only focus on discussing the semantics extension and

the location transparency theorem. For readers who are curious about the (rather

complicated) type system, please refer to appendix 3.A.

3.4.1 The Revised Syntax and Semantics of FR

We present a revised syntax of FR in figure 3.3. Note that &𝑤 and &mut𝑤 represent

immutable and mutable borrowing, where &[𝑚𝑢𝑡]𝑤 represents either a immutable

or a mutable borrow term. 𝓁
•

and 𝓁
◦

are owned and borrowed references where 𝓁

represents a location in a program state. A copy term is denoted as !𝑤 . In addition,

different from the original FR and Rust which do not have explicit syntax for move,

we use #𝑤 to express move explicitly.

The notion of program state S is introduced in figure 3.4, which is a mapping from

a location to a tuple of value and lifetime. When a value is replaced or its lifetime is

expired, it will be removed from the program state.

We provide the operations of recursively removing values based on a location 𝓁

and a lifetime 𝑘 from the state:(
S ⊗ (𝓁• ↦→ (𝑣,𝑘))

)
\𝓁• = S \𝑣

S \𝑣 = S otherwise

66 Chapter 3. Oxidising Remote Procedure Calls

and respectively:

S \𝑘 (𝓁) =

S(𝓁) if S(𝓁) = (𝑣,𝑘)

undefined otherwise

Figure 3.5 shows the small-step operational semantics of FR, which takes the form

of a reduction 𝑆,𝑡
𝑘−→ 𝑆′, 𝑡 ′, where 𝑆 is the program state before the evaluation of the

term 𝑡 , and 𝑆′, 𝑡 ′ are the program state and the term after the evaluation. 𝑘 is a lifetime,

which we omit when it is irrelevant to the evaluation of a term.

Evaluating a copy term simply makes a copy of a value 𝑣 at a given location 𝓁,

without modifying the program state, whereas evaluating a move term moves a value

𝑣 out of a given location 𝓁. A heap allocation box 𝑣 puts the value 𝑣 into a fresh

location 𝓁 and gives it the global lifetime ⊤, which outlives all other lifetimes. The

S(𝓁) = (𝑣,𝑚)

S, !𝓁• −→S, 𝑣
(Copy)

S ⊗𝓁 ↦→ (𝑣,𝑚),#𝓁• −→S ⊗𝓁 ↦→ ⊥, 𝑣
(Move)

𝓁 ∉ dom S

S,box 𝑣 −→S ⊗𝓁 ↦→ (𝑣,⊤),𝓁•
(Box)

𝓁 ∈ dom S

S,&[mut]𝓁• −→S,𝓁◦
(Borrow)

S ⊗𝓁 ↦→ (𝑣,𝑚),𝓁•
:= 𝑣′ −→ (S \𝑣) ⊗𝓁 ↦→ (𝑣′,𝑚),()

(Assign Owned)

S ⊗𝓁 ↦→ (𝑣,𝑚),𝓁◦
:= 𝑣′ −→ (S \𝑣) ⊗𝓁 ↦→ (𝑣′,𝑚),()

(Assign Borrowed)

𝓁 ∉ dom S

S,let mut 𝑥 = 𝑣 ;𝑡
𝑘−→S ⊗𝓁 ↦→ (𝑣,𝑘), 𝑡 [𝓁•/𝑥]

(Decl)

S, {𝑣} 𝑘−→S \𝑠𝑢𝑐 𝑘,𝑣
(Block (base))

S, 𝑡 𝑠𝑢𝑐 𝑘−→ S′, 𝑡 ′

S, {𝑡} 𝑘−→S′, {𝑡 ′}
(Block (suc))

𝓁 ∈ dom S

S,𝓁•
;𝑡 −→S \𝓁•, 𝑡

(Seq-OwnedRef)

𝓁 ∈ dom S

S,𝓁◦
;𝑡 −→S, 𝑡

(Seq-BorrowedRef)

S, 𝑖;𝑡 −→S, 𝑡
(Seq-Int)

S,();𝑡 −→S, 𝑡
(Seq-Unit)

Figure 3.5: The semantics of revised FR

3.4. The Operational Semantics 67

𝐸 ::= [·] | 𝐸;𝑡 | 𝑣 ;𝐸 | let mut 𝑥 = 𝐸;𝑡 | let mut 𝑥 = 𝑣 ;𝐸 | {𝐸} | box 𝐸 | 𝑤 = 𝐸

𝑆,𝑡 −→ 𝑆,𝑡 ′

𝑆,𝐸 [𝑡] −→ 𝑆′,𝐸 [𝑡 ′]
(Context)

Figure 3.6: Evaluation context

rule for evaluating a borrow term produces a borrowed reference of the give location

𝓁. Assignment places a given value 𝑣′ in the location 𝓁, and recursively deallocates

the old value 𝑣 from the program state. Note that assignments to immutably borrowed

references are prohibited by the type system provided by Pearce’s (2021) original

work, the discussion of the type system is omitted here since focus on the analysis of

the SOS of FR programs. The evaluation of a declaration allocates a given value 𝑣 to a

fresh location 𝓁 and substitutes latter occurrence of the declared variable 𝑥 with the

owned reference 𝓁
•
.

FR’s lifetimes are based on the the lexical structure of programs. A block’s lifetime

𝑘 is based on the depth of the block. A block with deeper depth suc 𝑘 lives shorter than

a block with depth 𝑘 . The evaluation of a block is the evaluation of the term inside

the block. At the end of the evaluation, a single value 𝑣 is obtained and values that

have short lifetime than the current block are deallocated from the program state.

The reduction rules for the evaluation of sequences are intuitive. We highlight the

case for a sequence of which the first term is an owned reference. After evaluating

the owned reference, it is recursively deallocated from the program state.

An evaluation context is a term with a placeholder [·]. 𝐸 [𝑡] is a term obtained by

replacing the placeholder with a term 𝑡 . The evaluation context and reduction rule

for the evaluation context are shown in figure 3.6.

Next, we will discuss the syntax and semantics of dFR, which extends FR with

distributed computation features including remote references and values.

3.4.2 The Syntax and Semantics of dFR

Figure 3.7 shows the syntax of dFR, which is the syntax of FR discussed in section 3.4.1

extended with the remote declaration let mut@𝑛 𝑥 = 𝑡 ;𝑡 , remote heap allocation

box 𝑡 , remote values 𝑣@𝑛, and remote terms 𝑡@𝑛. All extensions are highlighted.

Note that 𝑛 is the address of a node and N is the set of addresses. Also, such an

68 Chapter 3. Oxidising Remote Procedure Calls

extension does not change the type system of FR.

Building upon the program state S for FR, in figure 3.8, we introduce the dis-

tributed program state D, which maps addresses of nodes to their program states.

The reduction rule takes the form of D,C −→D′,C′
, where C and C′

are configura-

tion stacks. For each reduction, the term on the top of a configuration stack C gets

Term(T) 𝑡 ::= let mut 𝑥 = 𝑡 ;𝑡 declaration

| let mut@𝑛 𝑥 = 𝑡 ;𝑡 remote declaration

| 𝑤 := 𝑡 assignment

| 𝑡 ;𝑡 sequence

| () unit

| {𝑡} block

| box 𝑡 heap allocation

| box@𝑛 𝑡 remote heap allocation

| &𝑤 immutable borrow

| &mut 𝑤 mutable borrow

| #𝑤 move

| !𝑤 copy

| 𝑣 value

| 𝑣@𝑛 remote value

Remote Term 𝑡𝑑 ::= 𝑡@𝑛

LVal 𝑤 ::= 𝑥 variable

| ∗𝑤 dereference

Value(V) 𝑣 ::= ⊥

| () unit

| 𝑖 integer

| 𝓁
•

owned reference

| 𝓁
◦

borrowed reference

Location 𝓁 ∈ A Node 𝑛 ∈ N

Figure 3.7: The syntax of dFR

3.4. The Operational Semantics 69

D : N ⇀ S nt ∈ N ×1+N ×T

C : (𝑛𝑡)∗ Configuration : D,C

Figure 3.8: Distributed program state and configuration stack

evaluated. The element of the configuration stack can either be a pair of an address

and a hole (𝑛,?) or a pair of an address and a term (𝑛,𝑡). Utilising the distributed pro-

gram state and the configuration stack, we provide the semantics of dFR. We explain

the reduction rules for each operation.

To evaluate copying a remotely owned reference 𝓁
•
@𝑛′ on a node with address

𝑛, the first step shown in the rule Copy (s1) is to update the configuration stack by

changing the (𝑛, !𝓁•
@𝑛′) to (𝑛,?), and pushing a new address-term pair (𝑛′, !𝓁•) to

be evaluated onto the stack. It models that the computation is passed to the node

𝑛′, which stores the resource owned by the reference 𝓁
•
@𝑛′. Then the rule Copy (s2)

indicates that the copy term !𝓁
•

gets evaluated on the node 𝑛′, and the resulting value

annotated with the address 𝑛′ is passed back to fill in the hole.

D(𝑛′) (𝓁) = (𝑣,𝑚)

D,C ++ (𝑛, !𝓁•
@𝑛′) −→ D,C ++ (𝑛,?) ++ (𝑛′, !𝓁•)

(Copy (s1))

D(𝑛′) (𝓁) = (𝑣,𝑚)

D,C ++ (𝑛,?) ++ (𝑛′, !𝓁•) −→ D,C ++ (𝑛,𝑣@𝑛′)
(Copy (s2))

Similarly, as for the semantics of moving the value out of a remote owned refer-

ence, the first step shown in Move (s1) is to replace the term on the node 𝑛 with a

hole, and pass the copy term to the node 𝑛′ to evaluate. Then as shown in Move (s2),

the resulting value 𝑣 annotated with the address 𝑛′ is passed back to the node 𝑛 at the

end of the evaluation to fill in the hole, and the value of the location 𝓁 at the program

state of the node 𝑛′ is replaced by ⊥, indicating that the value is moved out of the

location 𝓁 at the node 𝑛′.

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,#𝓁•
@𝑛′) −→

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,?) ++ (𝑛′,#𝓁•)

(Move (s1))

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,?) ++ (𝑛′,#𝓁•) −→
D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ ⊥),C ++ (𝑛,𝑣@𝑛′)

(Move (s2))

70 Chapter 3. Oxidising Remote Procedure Calls

The rules Box (s1) and Box (s2) show the evaluation of a remote heap allocation

box@𝑛′ 𝑣 on the node 𝑛. Firstly, the heap allocation is passed to the node 𝑛′ to be

evaluated, and a hole on the node 𝑛 is created and pushed onto the configuration

stack. The value 𝑣 is stored in a fresh location 𝓁 at the program state of the node 𝑛′

and assigned with the lifetime ⊤ since it is a heap allocation, hence a owned reference

𝓁
•

is created in the node 𝑛′. Such a owned reference is then passed back to the node

𝑛 allowing the node 𝑛 to own the location 𝓁 created by the heap allocation on the

node 𝑛′. At the end of the evaluation, as shown in the rule Box (s2), on the top of

the configuration stack, the hole create on the node 𝑛 is filled by the owned remote

reference 𝓁
•
@𝑛′

D,C ++ (𝑛, (box@𝑛′ 𝑣)) −→ D,C ++ (𝑛,?) ++ (𝑛′,box 𝑣)
(Box (s1))

𝓁 ∉ domD(𝑛′)

D,C ++ (𝑛,?) ++ (𝑛′,box 𝑣) −→
D | (𝑛′ ↦→ D(𝑛′) ⊗𝓁 ↦→ (𝑣,⊤)),C ++ (𝑛,𝓁•

@𝑛′)

(Box (s2))

The rules Borrow (s1) and Borrow (s2) show the evaluation of immutable and

mutable borrow terms. On a given node 𝑛, to borrow a remotely owned reference

from a different node 𝑛′, firstly a hole is created and pushed waiting for a term to

be passed back, and the borrow term &[mut]𝓁•
@𝑛′ is passed to the node 𝑛′ to be

evaluated. After it being evaluated on the node 𝑛′, the resulting remotely borrowed

reference 𝓁
◦
@𝑛′ is passed back to the node 𝑛 into the hole on the configuration stack.

𝓁 ∈ domD(𝑛′)

D,C ++ (𝑛,&[mut]𝓁•
@𝑛′) −→ D,C ++ (𝑛,?) ++ (𝑛′,&[mut]𝓁•)

(Borrow (s1))

𝓁 ∈ domD(𝑛′)

D,C ++ (𝑛,?) ++ (𝑛′,&[mut]𝓁•) −→ D,C ++ (𝑛,𝓁◦
@𝑛′)

(Borrow (s2))

A remote assignment to an owned reference 𝓁
•
@𝑛′ := 𝑣′ on the node 𝑛 assigns a

new value 𝑣′ to its remotely owned reference on the node 𝑛′, which is shown in the

rule Assign Owned (s1) and Assign Owned (s2). The first step is again leaving a

hole awaiting to be filled on the configuration stack and passing the assignment to

the node 𝑛′ to be evaluated. In the next step, the evaluation of the assignment on the

node 𝑛′ modifies the program state on 𝑛′ by recursively deallocates the old value 𝑣

which is stored in the location 𝓁. And then the location 𝓁 on the node 𝑛′ is assigned

3.4. The Operational Semantics 71

with the new value 𝑣′. Since the assignment produces only a unit value (), it will be

passed back and fill in the hole on the configuration stack.

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,𝓁◦
@𝑛′ := 𝑣′) −→

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,?) ++ (𝑛′,𝓁◦
:= 𝑣′)

(Assign Borrowed (s1))

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,?) ++ (𝑛′,𝓁◦
:= 𝑣′) −→

D ⊗ (𝑛′ ↦→ S \𝑣 ⊗𝓁 ↦→ (𝑣′,𝑚)),C ++ (𝑛,())

(Assign Borrowed (s2))

The evaluation of a remote assignment to a borrowed reference is similar shown

in rules Assign Borrowed (s1) and Assign Borrowed (s2).. Note that again, since

dFR extends FR without any modification of FR’s type system, same to assignments

in FR, remote assignments to immutable references in dFR are also prohibited by the

type system.

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,𝓁◦
@𝑛′ := 𝑣′) −→

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,?) ++ (𝑛′,𝓁◦
:= 𝑣′)

(Assign Borrowed (s1))

D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑚)),C ++ (𝑛,?) ++ (𝑛′,𝓁◦
:= 𝑣′) −→

D ⊗ (𝑛′ ↦→ S \𝑣 ⊗𝓁 ↦→ (𝑣′,𝑚)),C ++ (𝑛,())

(Assign Borrowed (s2))

Demonstrated in Decl (s1) and Decl (s2), the evaluation of a remote declaration

is more complicated. The first step shown in Decl (s1) leaves a hole to be filled by the

resulting term in the substitution of the declared variable 𝑥 . Then the declaration is

passed to the node 𝑛′ to be evaluated. Shown in Decl (s2), once a fresh location 𝓁 on

the node 𝑛′ is allocated with the value 𝑣 , the owned reference 𝓁
•

will then be passed

back to the node 𝑛 and all occurrences of the declared variable 𝑥 on the node 𝑛 will

be substituted with the remote owned reference 𝓁
•
@𝑛′.

D,C ++ (𝑛,let mut@𝑛′ 𝑥 = 𝑣 ;𝑡) −→
D,C ++ (𝑛,𝑡 [?/𝑥]) ++ (𝑛′,let mut 𝑥 = 𝑣 ;𝑥)

(Decl (s1))

𝓁 ∉ domD(𝑛′)

D,C ++ (𝑛,𝑡 [?/𝑥]) ++ (𝑛′,let mut 𝑥 = 𝑣 ;𝑥) −→
D ⊗ (𝑛′ ↦→ S ⊗𝓁 ↦→ (𝑣,𝑘)),C ++ (𝑛,𝑡 [𝓁•

@𝑛′/𝑥])

(Decl (s2))

Lastly, all reduction rules for evaluating terms presented in FR are adapted into

reduction rules for evaluating dFR via the rule Local Term. As for the evaluation

72 Chapter 3. Oxidising Remote Procedure Calls

of remote terms, shown in the rule Remote Term, if a local term 𝑡 on the node 𝑛′ is

evaluated into 𝑡 ′, then when it is treated as a remote term 𝑡@𝑛′ on the node 𝑛, it will

be evaluated to a remote term 𝑡 ′@𝑛′ on the node 𝑛.

S, 𝑡 −→S′, 𝑡 ′

D ⊗ (𝑛 ↦→ S),C ++ (𝑛,𝑡) −→ D ⊗ (𝑛 ↦→ S′),C ++ (𝑛,𝑡 ′)
(Local Terms)

D ⊗ (𝑛′ ↦→ S),C ++ (𝑛′, 𝑡) −→ D ⊗ (𝑛′ ↦→ S′),C ++ (𝑛′, 𝑡 ′)

D ⊗ (𝑛′ ↦→ S),C ++ (𝑛,𝑡@𝑛′) −→ D ⊗ (𝑛′ ↦→ S′),C ++ (𝑛,𝑡 ′@𝑛′)
(Remote Terms)

In the next section, we present and prove a location transparency theorem, which

states that when translating a monolithic program written in FR into a distributed

program written in dFR, the semantics of the monolithic program is preserved.

3.4.3 Preservation of SemanticswhenTranslating a FRProgram

into a dFR Program

As we have mentioned in previous sections, by extending FR into dFR, the type sys-

tem and static borrow checking of the validity of owning, immutably borrowing and

mutably borrowing resources remain unchanged. By formalising the semantics of

FR and dFR, we would like to show that, when we flatten a distributed program in

dFR into a monolithic program in FR, the flattened result of the execution of the dis-

tributed program should be the same as the result of the execution of the flattened

single node program. By demonstrating that the distributed program preserves the

original semantics of the monolithic program, we can then conclude that the memory

safety guarantees provided by FR’s type system and static checking can be extended

into distributed program in dFR.

Formally, we state this semantic preservation property of the distributed exten-

sion dFR in the location transparency theorem 3.4.1.

Before giving the definition of the location transparency theorem, we define a

relation { that fuses two reduction steps of an operation in dFR introduced in sec-

tion 3.4.2. The reduction relation for each dFR operation is decomposed into two steps

just for presentational purposes. The location transparency theorem states that fusing

two reduction steps of a dFR operation gives the semantics of the operation, which

preserves the semantics of its corresponding operation defined in FR as a single step

reduction relation. Formally, the fusion relation is defined as:

3.4. The Operational Semantics 73

Definition 3.4.1 (Fusion Relation). For any term that contains remote components, for

instance, a remote copy, a fusion relation is defined by two reductions in the operational

model. For any term that does not contain remote components, for instance, a local term,

a fusion relation is just a single reduction.

D,𝐶 ++ (𝑛,𝑡){ D′,𝐶 ++ (𝑛,𝑡 ′) iff

(𝑡 is remote =⇒ ∃𝑡 ′′,𝐶′,D′′.

D,𝐶 ++ (𝑛,𝑡) −→ D′′,𝐶′ ++ (𝑛,𝑡 ′′)
∧ D′′,𝐶′ ++ (𝑛,𝑡 ′′) −→ D′,𝐶 ++ (𝑛,𝑡 ′))

∨(¬(𝑡 is remote) =⇒ D,𝐶 ++ (𝑛,𝑡) −→ D′,𝐶 ++ (𝑛,𝑡 ′))

With the definition of the fusion relation, we state the location transparency the-

orem as below. Note that the reverse direction of the theorem does not hold. Since

to extend a given single node program into a distributed program by allocating the

program state on arbitrary nodes and making the term involved in the execution con-

taining remote components that live on arbitrary nodes may not lead to constructing

a distributed program that can be successfully executed. However, because our goal is

to show that the distributed program preserves the same behaviour as if it is a single

node program, having only one direction in the theorem is sufficient for our claim.

Theorem 3.4.1 (Location Transparency). For any term 𝑡 , given an initial distributed

program state D and an initial single node program state S, where the flattened

distributed program state equals to the single node program state, if a distributed

execution of a term 𝑡 that may be a remote term or contain remote component with

the distributed program state D results in a distributed program state D′
and a value

𝑣 which can be either remote or local, then the execution of the flattened term 𝑡 with

the single node program state S will gives a state S′
and value 𝑣′, where the flattened

resulting distributed program state |D′| equals to the 𝑆′ and the flattened value 𝑣

equals to 𝑣′. { is the fusion relation that fuses two reduction steps of an operation

in dFR given in definition 3.4.1. We make locations on all nodes distinct to simplify

the proof.

∀𝑡 ∈ T . D,𝐶 ++ (𝑛,𝑡){ D′,𝐶 ++ (𝑛,𝑣) ∧ |D| = S

⇒

S, 𝑡 |@ −→S′, 𝑣′∧ |D′| = S′∧𝑣 |@ = 𝑣′

74 Chapter 3. Oxidising Remote Procedure Calls

where | · | and ·|@ are operators that erase addresses of nodes from distributed program

states and terms defined as:

|D| =
⋃

∀𝑛∈domD
D(𝑛)

(let mut@𝑛 𝑥 = 𝑡 ;𝑡) |@ = let mut 𝑥 = 𝑡 ;𝑡 box@𝑛 𝑡 |@ = box 𝑡

𝓁
•
@𝑛 := 𝑣 |@ = 𝓁

•
:= 𝑣 𝓁

◦
@𝑛 := 𝑣 |@ = 𝓁

◦
:= 𝑣

𝑣@𝑛 |@ = 𝑣 𝑡@𝑛 |@ = 𝑡 |@

Since a term 𝑡 is always a closed term, we prove the theorem 3.4.1 by structural

induction on the term 𝑡 . We focus on presenting proofs of the cases concerning the

remote extensions in dFR’s reduction rules given in section 3.4.2.

Case Copy. We assume that before the evaluation, given the distributed program

state and monolithic program state as below:

D =D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)) |D0 | = S0

We can say that, initially, the flattened distributed program state equals to the mono-

lithic program state:

|D| = S

Following the dFR’s reduction rule Copy (s1) and Copy (s2), the distributed execution

of a remote copy term gives:

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛, !𝓁•
@𝑛′){

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛,𝑣@𝑛′)

Following FR’s reduction rule Copy, the monolithic execution of the flattened remote

copy term gives:

S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), !𝓁•
@𝑛′|@ −→S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), 𝑣

After the evaluation, the updated distributed program state and monolithic program

state are shown as below:

D′ =D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S′ = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚))

To conclude, after the evaluation, the flattened updated distributed program state

and the updated monolithic program state are equal, and the flattened resulting value

3.4. The Operational Semantics 75

obtained from the distributed execution and the value obtained from the monolithic

execution are equal:

|D′| = S′ 𝑣@𝑛′|@ = 𝑣

Hence:

D,𝐶 ++ (𝑛, !𝓁•
@𝑛′){ D′,𝐶 ++ (𝑛,𝑣@𝑛′) ∧ |D| = S

⇒

S, !𝓁•
@𝑛′|@ −→S′, 𝑣 ∧ |D′| = S′∧𝑣@𝑛′|@ = 𝑣

□

Case Move. We assume that before the evaluation, given the distributed program

state and monolithic program state as below:

D =D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)) |D0 | = S0

We can say that, initially, the flattened distributed program state equals to the mono-

lithic program state:

|D| = S

Following the dFR’s reduction ruleMove (s1) andMove (s2), the distributed execution

of a remote move term gives:

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛,#𝓁•
@𝑛′){ D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ ⊥),𝐶 ++ (𝑛,𝑣@𝑛′)

Following FR’s reduction rule Move, the monolithic execution of the flattened remote

move term gives:

S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)),#𝓁•
@𝑛′|@ −→S0 ⊗ (𝓁 ↦→ ⊥), 𝑣

After the evaluation, the updated distributed program state and monolithic program

state are shown as below:

D′ =D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ ⊥)) S′ = S0 ⊗ (𝓁 ↦→ ⊥)

To conclude, after the evaluation, the flattened updated distributed program state and

the updated monolithic program are equal, and the flatted resulting value obtained

from the distributed execution and the resulting value obtained from the monolithic

execution are equal:

|D′| = |D0 | ⊗ (𝓁 ↦→ ⊥) = S0 ⊗ (𝓁 ↦→ ⊥) = S′ 𝑣@𝑛′|@ = 𝑣

76 Chapter 3. Oxidising Remote Procedure Calls

Hence:

D,𝐶 ++ (𝑛,#𝓁•
@𝑛′){ D′,𝐶 ++ (𝑛,𝑣@𝑛′) ∧ |D| = S

⇒

S,#𝓁•
@𝑛′|@ −→S′, 𝑣 ∧ |D′| = S′∧𝑣@𝑛′|@ = 𝑣

□

Before proving the case for Box, we introduce a lemma stating a relation between

a fresh location in a distributed program state D and such a location in a monolithic

program state S.

Lemma 3.4.2. Given a distributed program state D and a monolithic program state S,

𝑛 is a node in the domain of D:

|D| = 𝑆 ∧𝓁 ∉ domD(𝑛) ⇒ 𝓁 ∉ dom S

Proof. According to theorem 3.4.1, locations on all nodes in D are distinct. Given 𝓁

is a fresh location in domD(𝑛), i.e., 𝓁 ∉ domD(𝑛), 𝓁 is also not in any other nodes

in D. Hence we have:

𝓁 ∉ dom |D|

Since |D| = 𝑆 , we can conclude that:

𝓁 ∉ dom S

□

Case Box. We assume that before the evaluation, given the distributed program state

D and monolithic program state S where the flatten distributed program state equals

to the monolithic program state. In addition, we take a fresh location 𝓁:

|D| = S 𝓁 ∉ domD(𝑛′)

Following the dFR’s reduction rule Box (s1) and Box (s2), the distributed execution

of a remote heap allocation term gives:

D,𝐶 ++ (𝑛,box@𝑛′ 𝑣){ D | (𝑛′ ↦→ D(𝑛′) ⊗ (𝓁 ↦→ (𝑣,⊤))),𝐶 ++ (𝑛,𝓁•
@𝑛′)

By lemma 3.4.2, we have:

𝓁 ∉ dom S

3.4. The Operational Semantics 77

Following FR’s reduction rule Box, the monolithic execution of the flattened remote

heap allocation term gives:

S, (box@𝑛′ 𝑣) |@ −→S ⊗ (𝓁 ↦→ (𝑣,⊤)),𝓁•

After the evaluation, the updated distributed program state and monolithic program

state are shown as below:

D′ =D | (𝑛′ ↦→ D(𝑛′) ⊗ (𝓁 ↦→ (𝑣,⊤))) S′ = S ⊗ (𝓁 ↦→ (𝑣,⊤))

The updated distributed program state is flattened into:

|D′| = |D| ⊗ (𝓁 ↦→ (𝑣,⊤))

Since we have |D| = S, we can conclude that the flattened updated distributed pro-

gram state and the updated monolithic program state are equal:

|D′| = |D| ⊗ (𝓁 ↦→ (𝑣,⊤)) = S ⊗ (𝓁 ↦→ (𝑣,⊤)) = S′

Also, the flattened remote owned reference obtained from the distributed execution

equals to the owned reference obtained from the monolithic execution:

𝓁
•
@𝑛′|@ = 𝓁

•

Hence:

D,𝐶 ++ (𝑛,box@𝑛′ 𝑣){ D′,𝐶 ++ (𝑛,𝓁•) ∧ |D| = S

⇒

S, (box@𝑛′ 𝑣) |@ −→S′,𝓁•∧ |D′| = S′∧𝓁
•
@𝑛′|@ = 𝓁

•

□

Before proving the case for Borrow, we introduce a lemma stating a relation

between an existing location in a distributed program state D and such a location in

a monolithic program state S.

Lemma 3.4.3. Given a distributed program state D and a monolithic program state S,

𝑛 is a node in the domain of D:

|D| = 𝑆 ∧𝓁 ∈ domD(𝑛) ⇒ 𝓁 ∈ dom S

78 Chapter 3. Oxidising Remote Procedure Calls

Proof. Given 𝓁 is an existing location in domD(𝑛), i.e., 𝓁 ∈ domD(𝑛), we have:

𝓁 ∈ dom |D|

Since |D| = 𝑆 , we can conclude that:

𝓁 ∈ dom S

□

Case Borrow. We assume that before the evaluation, given the distributed program

state D and monolithic program state S where the flatten distributed program state

equals to the monolithic program state, and 𝓁 is a location with an allocated value:

|D| = S 𝓁 ∈ domD(𝑛′)

Following the dFR’s reduction rule Borrow (s1) and Borrow (s2), the distributed

execution of a remote borrow term gives:

D,𝐶 ++ (𝑛,&[mut𝓁•
@𝑛′)] { D,𝐶 ++ (𝑛,𝓁◦

@𝑛′)

By lemma 3.4.3, we have:

𝓁 ∈ dom S

Following FR’s reduction rule Borrow, the monolithic execution of the flattened re-

mote borrow term gives:

S, (&[mut]𝓁•
@𝑛′) |@ −→S,𝓁◦

To conclude, after the evaluation, the distributed program state and the monolithic

program state remain unchanged, hence they are still equal. In addition, the flat-

tened remote borrowed reference obtained from the distributed execution equals to

the borrowed reference obtained from the monolithic execution:

𝓁
◦
@𝑛′|@ = 𝓁

◦

Hence:

D,𝐶 ++ (𝑛,&[mut]𝓁•
@𝑛′){ D,𝐶 ++ (𝑛,𝓁◦) ∧ |D| = S

⇒

S, (&[mut]𝓁•
@𝑛′) |@ −→S,𝓁◦∧ |D| = S∧𝓁

◦
@𝑛′|@ = 𝓁

◦

□

3.4. The Operational Semantics 79

Case Assign Owned. We assume that before the evaluation, given the distributed

program state and monolithic program state as below:

D =D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)) |D0 | = S0

We can say that, initially, the flattened distributed program state equals to the mono-

lithic program state:

|D| = S

Following the dFR’s reduction rule Assign Owned (s1) and Assign Owned (s2), the

distributed execution of a remote assignment to an owned reference gives:

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛,𝓁•
@𝑛′ := 𝑣′){

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣′,𝑚))),𝐶 ++ (𝑛,()@𝑛′)

Following FR’s reduction rule Assign Owned, the monolithic execution of the flat-

tened remote assignment to an owned reference gives:

S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), (𝓁•
@𝑛′ := 𝑣′) |@ −→S0 ⊗ (𝓁 ↦→ (𝑣′,𝑚)),()

After the evaluation, the updated distributed program state and monolithic program

state are shown as below:

D′ =D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣′,𝑚))) S′ = S0 ⊗ (𝓁 ↦→ (𝑣′,𝑚))

To conclude, after the evaluation, the flattened updated distributed program state and

the updated monolithic program are equal, and the flatted unit value obtained from

the distributed execution and the unit value obtained from the monolithic execution

are trivially equal:

|D′| = |D0 | ⊗ (𝓁 ↦→ (𝑣′,𝑚)) = S0 ⊗ (𝓁 ↦→ (𝑣′,𝑚)) = S′ ()@𝑛′|@ = ()

Hence:

D,𝐶 ++ (𝑛,𝓁•
@𝑛′ := 𝑣′){ D′,𝐶 ++ (𝑛,()@𝑛′) ∧ |D| = S

⇒

S, (𝓁•
@𝑛′ := 𝑣′) |@ −→S′,()∧ |D′| = S′∧()@𝑛′|@ = ()

□

80 Chapter 3. Oxidising Remote Procedure Calls

Case Assign Borrowed. We assume that before the evaluation, given the distributed

program state and monolithic program state as below:

D =D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)) |D0 | = S0

We can say that, initially, the flattened distributed program state equals to the mono-

lithic program state:

|D| = S

Following the dFR’s reduction rule Assign Borrowed (s1) and Assign Borrowed

(s2), the distributed execution of a remote assignment to a (mutably) borrowed refer-

ence gives:

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛,𝓁◦
@𝑛′ := 𝑣′){

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣′,𝑚))),𝐶 ++ (𝑛,()@𝑛′)

Following FR’s reduction rule Assign Borrowed, the monolithic execution of the

flattened remote assignment to a (mutably) borrowed reference gives:

S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), (𝓁◦
@𝑛′ := 𝑣′) |@ −→S0 ⊗ (𝓁 ↦→ (𝑣′,𝑚)),()

After the evaluation, the updated distributed program state and monolithic program

state are shown as below:

D′ =D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣′,𝑚))) S′ = S0 ⊗ (𝓁 ↦→ (𝑣′,𝑚))

To conclude, after the evaluation, the flattened updated distributed program state and

the updated monolithic program are equal, and the flatted unit value obtained from

the distributed execution and the unit value obtained from the monolithic execution

are trivially equal:

|D′| = |D0 | ⊗ (𝓁 ↦→ (𝑣′,𝑚)) = S0 ⊗ (𝓁 ↦→ (𝑣′,𝑚)) = S′ ()@𝑛′|@ = ()

Hence:

D,𝐶 ++ (𝑛,𝓁◦
@𝑛′ := 𝑣′){ D′,𝐶 ++ (𝑛,()@𝑛′) ∧ |D| = S

⇒

S, (𝓁◦
@𝑛′ := 𝑣′) |@ −→S′,()∧ |D′| = S′∧()@𝑛′|@ = ()

□

3.4. The Operational Semantics 81

Case Decl. We assume that before the evaluation, given the distributed program state

D and monolithic program state S where the flatten distributed program state equals

to the monolithic program state. In addition, we take a fresh location 𝓁:

|D| = S 𝓁 ∉ domD(𝑛′)

Following the dFR’s reduction rule Decl (s1) and Decl (s2), the distributed execution

of a remote declaration gives:

D,𝐶 ++ (𝑛,let mut@𝑛′ 𝑥 = 𝑣 ;𝑡){

D | (𝑛′ ↦→ D(𝑛′) ⊗ (𝓁 ↦→ (𝑣,𝑘))),𝐶 ++ (𝑛,𝑡 [𝓁•
@𝑛′/𝑥])

By lemma 3.4.2, we have:

𝓁 ∉ dom S

Following FR’s reduction rule Decl, the monolithic execution of the flattened remote

declaration gives:

S, (let mut@𝑛′ 𝑥 = 𝑣 ;𝑡) |@ −→S ⊗ (𝓁 ↦→ (𝑣,𝑘)), 𝑡 [𝓁•/𝑥]

After the evaluation, the updated distributed program state and monolithic program

state are shown as below:

D′ =D | (𝑛′ ↦→ D(𝑛′) ⊗ (𝓁 ↦→ (𝑣,𝑘))) S′ = S ⊗ (𝓁 ↦→ (𝑣,𝑘))

To conclude, after the evaluation, the flattened updated distributed program state and

the updated monolithic program are equal, and the substitution with the flattened

owned reference obtained from the distributed execution and the substitution with

the owned reference obtained from the monolithic execution are trivially equal:

|D′| = |D| ⊗ (𝓁 ↦→ (𝑣,𝑘)) = S ⊗ (𝓁 ↦→ (𝑣,𝑘)) = S′

𝑡 [𝓁•
@𝑛′/𝑥] |@ = 𝑡 [(𝓁•

@𝑛′) |@/𝑥] = 𝑡 [𝓁•/𝑥]

Hence:

D,𝐶 ++ (𝑛,let mut@𝑛′ 𝑥 = 𝑣 ;𝑡){ D′,𝐶 ++ (𝑛,𝑡 [𝓁•
@𝑛′/𝑥]) ∧ |D| = S

⇒

S, (let mut@𝑛′ 𝑥 = 𝑣 ;𝑡) |@ −→S′, 𝑡 [𝓁•/𝑥] ∧ |D′| = S′∧ 𝑡 [𝓁•
@𝑛′/𝑥] |@ = 𝑡 [𝓁•/𝑥]

□

The proofs for location transparency of the distributed and monolithic executions

of local terms and remote terms should then be trivial.

82 Chapter 3. Oxidising Remote Procedure Calls

3.4.4 Summary

In section 3.3, we have discussed the design and implementation of a UMI framework

as a library in Rust. The core designed concepts of such a library — extending Rust’s

memory safety guarantees into a distributed setting — is presented in the formalisa-

tion of a distributed extension of a core calculus of Rust in this section. By proving

the location transparency theorem 3.4.1, we demonstrate that a distributed program

developed using the UMI framework preserves the semantics of a monolithic pro-

gram from which it is translated. Therefore, with our UMI framework, Rust’s mem-

ory safety guarantees provided by its type system, lifetime and ownership system,

and borrow checking mechanism are indeed extended into a distributed setting.

3.5 Related Work

Design and Implementations of Remote Procedural Call Described in Nel-

son’s (1981) thesis, RPC allows programs in separate address spaces to communicate

synchronously. By experimenting with different implementations of RPC, Nelson

(1981) argues that RPC is an efficient and effective programming tool for distributed

systems. Java RMI (Wollrath et al., 1996) implements the concept of RPC in a object-

orientated programming language. It outlines a model for distributed objects within

the Java environment which allows Java objects to communicate across different ad-

dress spaces. This RMI framework is designed to integrate seamlessly with the Java

language, preserving as much of the Java object model’s semantics as possible. As

for its memory management mechanism, it contains a design of distributed garbage

collection, ensuring that remote objects which are no longer referenced by any client

should be automatically garbage collected. However, the Stub object in this frame-

work does not always preserves the semantics of the Java object model.

Our UMI framework is designed to be truly integrated with Rust as it is semantic

preserving. The idea of location transparency and seamless integration of distributed

computing presented in this UMI framework is related to the formal model Krivine

Nets presented by Fredriksson and Ghica (2014), which extends the classic Krivine ab-

stract machine to support distributed execution. This extension allows a seamless and

transparent RPC mechanism to handle higher-order functions without transmitting

the actual code. Krivine Nets enable the seamless integration of distributed comput-

ing into programming languages by eliminating explicit communication and process

3.5. Related Work 83

management from source code. In addition, instead of embedding deployment details

within the source code, Krivine Nets handle these details automatically.

The RPC calculus presented by Cooper and Wadler (2009) explores the design

and implementation of a symmetrical location-aware programming language atop a

stateless server. The authors address the challenge of maintaining control state trans-

parently within a programming language, despite the stateless nature of web servers,

which typically do not retain client-specific session information. To achieve this, they

propose a technique involving three main steps: defunctionalisation, continuation-

passing style (CPS) translation, and the use of a trampoline mechanism for server-

to-client requests. The paper outlines the RPC calculus (𝜆rpc), which is enriched with

location annotations to indicate where code should execute, supporting semantics

where computation steps can occur at designated locations; and a translation from

𝜆rpc to a first-order client-server calculus (𝜆cs), which models an asymmetrical client-

server environment. They demonstrate that this translation preserves the locative se-

mantics of the source calculus, allowing for effective RPC calls in the location-aware

language. The subsequent work for such a RPC calculus present by (Choi et al., 2020)

proposes a polymorphic RPC (Remote Procedure Call) calculus that extends the typed

RPC calculus with polymorphic locations. It introduces a new polymorphic RPC cal-

culus that allows programmers to write succinct multi-tier programs using polymor-

phic location constructs and defines a type system for the polymorphic RPC calculus

and proves its type soundness. In addition it develops a monomorphisation trans-

lation that converts polymorphic RPC terms into monomorphic typed RPC terms,

allowing existing slicing compilation methods for client-server models to be used.

The type and semantic correctness of the monomorphisation translation are proven.

Distributed Memory Management Distributed garbage collection used in Java

RMI (Wollrath et al., 1996) as been an essential yet challenging research topic in dis-

tributed memory management. Abdullahi and Ringwood (1998) offers a comprehen-

sive review of distributed garbage collection (GC) schemes applicable to autonomous

systems connected by a network, particularly in the context of Internet program-

ming languages such as Java. It highlights the evolution of garbage collection from

single-address-space collectors to distributed systems due to the increasing promi-

nence of languages like Java in Internet applications. It categorises and reviews vari-

ous GC methods, discussing their adaptation for distributed environments, which are

characterised by issues such as communication overhead, locality of action, and non-

84 Chapter 3. Oxidising Remote Procedure Calls

deterministic communication latency. Designed for the object-oriented program-

ming language with actor model Pony (Clebsch et al., 2017), Orca is a concurrent

garbage collection algorithm which manages memory without requiring stop-the-

world pauses or synchronisation mechanisms, enabling zero-copy message passing

and mutable data sharing among actors. It leverages Pony’s type system to ensure

data race-free programs, allowing garbage collection tasks to be handled locally by

each actor without synchronisation, thus enhancing performance and responsive-

ness. Perhaps more relevant to our memory management mechanism, the region

system Reggio (Arvidsson et al., 2023) accompanied with a type system for Verona,

which is a concurrent object-oriented programming language, organises objects into

isolated regions, each with its own memory management strategy. It addresses the

challenge of providing the control of manual memory management while maintain-

ing memory safety by utilising a combination of region-based memory partitioning

and an ownership type system.

Formalisations of Rust and Their Limitations The formalism of a core calcu-

lus of the UMI framework presented in this chapter is based on a formalisation of a

core calculus of Rust described by Pearce (2021). Although as mentioned in previous

sections, we are not completely satisfied with this formalism, it is the most suitable

choice comparing to all common approaches of formalisation of Rust’s semantics we

have surveyed. In the following paragraphs, we discuss these approaches in detail.

There are many different approaches to formalise Rust, from different perspectives

and aiming for different application domains. RustBelt (Jung et al., 2017b) provide a

formalised continuation-passing style MIR — 𝜆Rust — mechanised using Iris. However,

such an approach does not provide a formal model which is close to the source-level

language of Rust. Hence, it is not convenient for us to use it as the basis for formalising

the distributed extensions of the features of the UMI framework.

Different from RustBelt, there are also attempts of formalising Rust from a source-

level language perspective. For instance, Oxide (Weiss et al., 2021) attempts to for-

malise near-complete source-level Rust language features, providing a type system

and small-step operational semantics. An implementation of Oxide is provided on

GitHub although the formal claims are not mechanised. We argue that due to the

level of the complexity and obscurity of this formalism, it is rather hard for us to gain

a clear understanding of the modelling of Rust’s borrow checking and non-lexical life-

time. In addition, without a concise and consistent presentation of the syntax, type

3.6. Conclusion and Further Work 85

system and formal semantics of the core features of Rust, it is again hard for us to use

such a formalism to reason about properties of Rust programs and be convinced that

the type system is indeed sound.

Back to the formalisation we choose to build our distributed language extension

upon, instead of modelling the full Rust language, Pearce (2021) formalises a core

calculus of Rust, which is FR, emphasising on the understanding of borrowing and

lifetime of Rust. However, this formalism does not include essential Rust language

features such as tuples, structs, functions and closures which makes it too minimal-

ist. One may argue that Pearce (2021) does discuss the possible extensions of FR to

include tuples and functions hence it is unfair to criticise such an approach being too

minimalist, however, I insist that these features are fundamental building blocks of

a core language and should not be treated as extensions of a core language. Besides,

the way that the let-binding is modelled made it hard to do substitutions, which is in

my opinion the obstacle of having functions as a part of the formalism. In addition,

its lexical treatment of Rust’s lifetime is already obsolete.

Due to the reality of lack of a concise formalism of the source-level Rust that cap-

tures all key concepts of Rust’s language features, our formalism of the UMI frame-

work as a distributed extension of Rust is also not completely satisfying. However,

it does demonstrate Rust’s core memory management mechanisms, and allows us to

prove the semantic preservation property of distributed programs implemented us-

ing the UMI framework. To have formalism of UMI capturing more language features

would require us to develop yet another formalism of source-level Rust, which is out

of the scope of this project.

3.6 Conclusion and Further Work

In this chapter, we first present our design, implementation, and formalisation of a

UMI framework for Rust. This UMI framework allows programmers to express dis-

tributed computation in the same form of monolithic computation, abstracting away

the internet communication complications and message passing details. To demon-

strate a distributed extension of Rust, our UMI framework extends Rust’s memory

safety guarantees into a distributed setting, and we present the formalism of a core

calculus focusing on the core features relating to distributed memory management

mechanisms in the UMI framework. We present FR, which is a core calculus of the

surface language of Rust, formalising the key concepts of Rust’s ownership and life-

86 Chapter 3. Oxidising Remote Procedure Calls

time in memory management. Then we extend FR into dFR, to include distributed

features of the UMI framework. By showing that distributed programs written in dFR

preserves the semantics of monolithic programs written in FR via proving a location

transparency theorem, we can conclude that the memory safety guarantees provided

by Rust can be extended to distributed programs written with our UMI framework.

In the future, we would like to conduct some quantitative evaluations for the UMI

framework. For instance, we could measure the performance overhead of distributed

programs written using the UMI framework comparing to those using TCP requests

or using other libraries such as tarpc. In addition, conducting user studies can be ben-

eficial for assessing how straightforward the UMI framework is to use when writing

distributed programs.

Epilogue

In this study, we have designed and implemented a distributed computing framework

in Rust which allows distributed programs to preserve the semantics of monolithic

programs. Such a design makes it easier for programmers to migrate monolithic Rust

programs into a distributed setting while adopting the memory safety guarantees of

these monolithic programs. In the end, I would like to enclose this chapter with some

high-level discussions.

Our UMI framework provides a new perspective for characterising the relation-

ship between a monolithic program and a distributed program — a monolithic pro-

gram can be viewed as an abstraction of a distributed program. It specifies the in-

tended functionalities to be achieved by a distributed program while encapsulating

the detailed implementations of message passing, data serialisation and deserialisa-

tion, and other network communication complications.

However, with such an abstract view of distributed program, network communi-

cation errors such as timeouts and server errors are not explicitly modelled or han-

dled with the UMI framework. Although we envision integrating such a framework

within micro-services platforms where server errors are mitigated by cloud service

providers, and supervision strategies can by used for taking snapshots and restarting

from a failure, making these issues not a critical problem of the design of the UMI

framework, we have to admit that, such a framework itself is not expressive enough

to model network communication errors.

One observation is that there is a trade-off between abstraction and expressive-

ness in modelling a distributed system. In this study, by making external facilities

3.6. Conclusion and Further Work 87

for handling the network communication issues, we focus on designing a concise ab-

straction which describes the intended functionalities of distributed programs and

making it easier to model and reason about memory safety of distributed programs.

88 Chapter 3. Oxidising Remote Procedure Calls

3.A The Type System of FR

Figure 3.9 presents the syntax of types of Pearce’s (2021) FR without any modifica-

tion. A primitive type such as the integer type int has copy semantics. A box type

□𝑇 that represents a heap allocation has move semantics. A partial type may contain

undefined components. An undefined component denoted by ⌊𝑇 ⌋ represents a cur-

rently inaccessible location as its value has already been moved. The dFR is merely a

semantics extension of FR, which uses the same type system as FR.

3.A.1 Preliminaries

These are support functions presented by Pearce (2021) for defining the typing rules.

Definition 3.A.1 (Copy Types). A type 𝑇 has copy semantics, denoted by copy(𝑇),

when 𝑇 = int or 𝑇 = &𝑤 .

Note that mutable references and boxes do not have copy semantics.

Definition 3.A.2 (Type Strengthening). For partial types 𝑇1 and 𝑇2, we say that 𝑇1

strengthes 𝑇2, denoted by 𝑇1 ⊑𝑇2, according to the following rules:

𝑇1 ⊑𝑇1

(W-Reflex)

𝑇1 ⊑𝑇2

□𝑇1 ⊑ □𝑇2

(W-Box)

𝑢 ⊑𝑤

Γ ⊢ &[mut]𝑢 ⊑ &[mut]𝑤
(W-Bor)

𝑇1 ⊑𝑇2

⌊𝑇1⌋ ⊑ ⌊𝑇2⌋
(W-UndefA)

𝑇1 ⊑𝑇2

𝑇1 ⊑ ⌊𝑇2⌋
(W-UndefB)

𝑇1 ⊑ ⌊𝑇2⌋

□𝑇1 ⊑ □⌊𝑇2⌋
(W-UndefC)

Partial Types 𝑇 ::= 𝑇 type

| □𝑇 partial box

| ⌊𝑇 ⌋ undefined

Types 𝑇 ::= 𝜖 unit

| int integer

| &mut𝑤 mutable borrow

| &𝑤 immutable borrow

| □𝑇 box

Figure 3.9: Syntax of Types

3.A. The Type System of FR 89

Note that the rule W-Bor requires the mutability to be the same on both sides.

Definition 3.A.3 (Type Join). The join of partial types 𝑇1 and 𝑇2, denoted 𝑇1 ⊔𝑇2, is a

partial function returning the strongest 𝑇3 such that 𝑇1 ⊑𝑇3 and 𝑇2 ⊑𝑇3.

Definition 3.A.4 (Environment Strengthening). Let Γ1 and Γ2 be typing environments.

We say that Γ1 strengthens Γ2, denoted Γ1 ⊑ Γ2, if and only if dom(Γ1) = dom(Γ2) and for

all 𝑥 ∈ dom(Γ1) where Γ1(𝑥) = ⟨𝑇1⟩𝑙 , we have Γ2(𝑥) = ⟨𝑇2⟩𝑙 where 𝑇1 ⊑𝑇2.

Definition 3.A.5 (Environment Join). The join of environments Γ1 and Γ2, denoted Γ1⊔
Γ2, is a partial function returning the strongest Γ3 such that Γ1 ⊑ Γ3 and Γ2 ⊑ Γ3.

Definition 3.A.6 (LVal Typing). An lval 𝑤 is said to be typed with respect to an envi-

ronment Γ, denoted Γ ⊢𝑤 : ⟨𝑇 ⟩, according to the following rules:

Γ(𝑥) = ⟨𝑇 ⟩𝑚

Γ ⊢ 𝑥 : ⟨𝑇 ⟩𝑚
(T-LvVar)

Γ ⊢𝑤 : ⟨□𝑇 ⟩𝑚

Γ ⊢ ∗𝑤 : ⟨𝑇 ⟩𝑚
(T-LvBox)

Γ ⊢𝑤 : ⟨&[mut]𝑢⟩𝑛 Γ ⊢ 𝑢 : ⟨𝑇 ⟩𝑚

Γ ⊢ ∗𝑤 : ⟨
⊔

𝑖
𝑇𝑖⟩

.
𝑖𝑚𝑖

(T-LvBor)

Definition 3.A.7 (Path). A path 𝜋 is a sequence of zero or more path selectors 𝜌 , which is

either empty (𝜋 ≜ 𝜖) or composed by appending a selector onto another path (𝜋 ≜ 𝜋 ′ ·𝜌).

Definition 3.A.8 (Path Selector). A path selector 𝜌 is always a dereference (𝜌 ≜ ∗).

Definition 3.A.9 (Path Conflict). Let 𝑢 ≜ 𝜋𝑢 | 𝑥 and𝑤 ≜ 𝜋𝑤 | 𝑦 be lvals. Then𝑤 is said

to conflict with 𝑢, denoted 𝑢 ⊲⊳𝑤 , if 𝑥 = 𝑦.

Note that 𝑢 ≜ 𝜋 | 𝑥 denotes destructuring of an lval 𝑢 into its base 𝑥 and path 𝜋 .

Definition 3.A.10 (Type Containment). Let Γ be an environment where Γ(𝑥) = ⟨𝑇 ⟩𝑙

for some l. Then Γ ⊢ 𝑥 { 𝑇𝑦 denotes that variable 𝑥 contains type 𝑇𝑦 and is defined as

contains(Γ,𝑇 ,𝑇𝑦) where:

contains(Γ,𝑇 ,𝑇𝑦) =


contains(Γ,□𝑇 ′,𝑇𝑦) if 𝑇 = □𝑇 ′,

true if 𝑇 =𝑇𝑦,

false otherwise

90 Chapter 3. Oxidising Remote Procedure Calls

Definition 3.A.11 (Read Prohibited). In an environment Γ, an lval𝑤 is said to be read

prohibited, denoted readProhibited(Γ,𝑤), when some 𝑥 exists where Γ ⊢ 𝑥 { &mut𝑢

and ∃𝑖 (𝑢𝑖 ⊲⊳𝑤).

Definition 3.A.12 (Write Prohibited). In an environment Γ, an lval 𝑤 is said to be

write prohibited, denoted writeProhibited(Γ,𝑤), when either some 𝑥 exists where

Γ ⊢ 𝑥 { &𝑢 ∧∃𝑖 (𝑢𝑖 ⊲⊳𝑤) or readProhibited(Γ,𝑤) holds.

The partial function move(Γ,𝑤) determines the environment after the value of an

lval 𝑤 is moved out:

Definition 3.A.13 (Move). Let Γ be an environment where Γ(𝑥) = ⟨𝑇1⟩𝑙 for some life-

time 𝑙 , and𝑤 an lval where𝑤 ≜ 𝜋𝑥 | 𝑥 . Then move(Γ,𝑤) is a partial function defined as

Γ [𝑥 ↦→ ⟨𝑇2⟩𝑙] where 𝑇2 = strike(𝜋𝑥 | 𝑇1):

strike(𝜖 | 𝑇) = [𝑇]

strike((𝜋 · ∗) | □𝑇1) = □𝑇2 where𝑇2 = strike(𝜋 | 𝑇1)

Definition 3.A.14 (Mutable). Let Γ be an environment where Γ(𝑥) = ⟨𝑇 ⟩𝑙 for some

lifetime 1, and 𝑤 an lval where 𝑤 ≜ 𝜋𝑥 | 𝑥 . Then mut(Γ,𝑤) is a partial function defined

as mutable(Γ,𝜋𝑥 | 𝑇) that determines whether 𝑤 is mutable:

mutable(Γ,𝜖 | 𝑇) = true

mutable(Γ, (𝜋 · ∗) | □𝑇) = mutable(Γ,𝜋 | 𝑇)

mutable(Γ, (𝜋 · ∗) | &mut𝑤) =
∧

𝑖
mut(Γ,𝜋 ·𝑤𝑖)

Definition 3.A.15 (Environment Drop). The environment drop deallocates locations by

removing them from an environment Γ: drop(Γ,𝑚) = Γ− {𝑥 ↦→ ⟨𝑇 ⟩𝑚 | 𝑥 ↦→ ⟨𝑇 ⟩𝑚 ∈ Γ}.

Definition 3.A.16 (Well-formed Type). For an environment Γ, a type 𝑇 is said to be

well-formed with respect to a lifetime 𝑙 , denoted Γ ⊢𝑇 ⪰ 𝑙 , according to rules:

Γ ⊢ int ⪰ 𝑙
(L-Int)

Γ ⊢ 𝑢 : ⟨𝑇 ⟩𝑚 𝑚 ⪰ 𝑙

Γ ⊢ &[mut]𝑢 ⪰ 𝑙
(L-Borrow)

Γ ⊢𝑇 ⪰ 𝑙

Γ ⊢ □𝑇 ⪰ 𝑙
(L-Box)

Definition 3.A.17 (Compatible Shape). For an environment Γ, two partial types𝑇1 and

𝑇2 are shape compatible, denoted as Γ ⊢𝑇1 ≈𝑇2, according to the following rules:

3.A. The Type System of FR 91

Γ ⊢ int ≈ int
(S-Int)

Γ ⊢𝑇1 ≈𝑇2

Γ ⊢ □𝑇1 ≈ □𝑇2

(S-Box)

∀𝑖, 𝑗 (Γ ⊢ 𝑢𝑖 :𝑇1 ≈𝑇2 :𝑤 𝑗 ⊣ Γ)

Γ ⊢ &[mut]𝑢 ≈ &[mut]𝑤
(S-Bor)

Γ ⊢𝑇1 ≈𝑇2

Γ ⊢ ⌊𝑇1⌋ ≈𝑇2

(S-UndefL)

Γ ⊢𝑇1 ≈𝑇2

Γ ⊢𝑇1 ≈ ⌊𝑇2⌋
(S-UndefR)

Definition 3.A.18 (Write). Let Γ be an environment where Γ(𝑥) = ⟨𝑇1⟩𝑙 for some life-

time 𝑙 and lval w where𝑤 ≜ 𝜋𝑥 | 𝑥 . Then, write𝑘 (Γ,𝑤,𝑇) is a partial function defined as

Γ2 [𝑥 ↦→ ⟨𝑇2⟩𝑙] for some rank 𝑘 ≥ 0 where (Γ2,𝑇2) = update𝑘 (Γ,𝜋𝑥 | 𝑇1,𝑇):

update0(Γ,𝜖 | 𝑇1,𝑇2) = (Γ,𝑇2)

update𝑘≥1(Γ,𝜖 | 𝑇1,𝑇2) = (Γ,𝑇1 ⊔𝑇2)

update𝑘 (Γ1, (𝜋 · ∗) | □𝑇1,𝑇) = (Γ2,□𝑇2) where (Γ2,𝑇2) = update𝑘 (Γ1,𝜋 | 𝑇1,𝑇)

update𝑘 (Γ, (𝜋 · ∗) | &mut 𝑢𝑖,𝑇) = (
⊔

𝑖
Γ𝑖,&mut 𝑢𝑖) where Γ𝑖 = write𝑘+1(Γ,𝜋 | 𝑢𝑖,𝑇)

3.A.2 Typing Rules

Utilising the helper functions defined in perious section, FR’s typing rules are shown

in figure 3.10. Note that we do not make any major modification to these typing

rules. The only minor changes are: 1) The syntax of the lifetime of a block is now

implicit; and 2) Since the syntax of declaration is changed from the original form

let mut 𝑥 = 𝑡 to let mut 𝑥 = 𝑡1;𝑡2 to allow substitutions, the typing rule is slightly

modified accordingly.

92 Chapter 3. Oxidising Remote Procedure Calls

𝜎 ⊢ 𝑣 :𝑇

Γ ⊢ ⟨𝑣 :𝑇 ⟩𝑙𝜎 ⊣ Γ
(T-Const)

Γ1 ⊢ ⟨𝑡 :𝑇 ⟩𝑙𝜎 ⊣ Γ2

Γ1 ⊢ ⟨box 𝑡 : □𝑇 ⟩𝑙𝜎 ⊣ Γ2

(T-Box)

Γ ⊢𝑤 : ⟨𝑇 ⟩𝑚 copy(𝑇) ¬readProhibited(Γ,𝑤)

Γ ⊢ ⟨!𝑤 :𝑇 ⟩𝑙𝜎 ⊣ Γ
(T-Copy)

Γ ⊢𝑤 : ⟨𝑇 ⟩𝑚 ¬writeProhibited(Γ1,𝑤) Γ2 = move(Γ1,𝑤)

Γ1 ⊢ ⟨#𝑤 :𝑇 ⟩𝑙𝜎 ⊣ Γ2

(T-Move)

Γ ⊢𝑤 : ⟨𝑇 ⟩𝑚 mut(Γ,𝑤) ¬writeProhibited(Γ,𝑤)

Γ ⊢ ⟨&mut𝑤 : &mut𝑤⟩𝑙𝜎 ⊣ Γ
(T-MutBorrow)

Γ ⊢𝑤 : ⟨𝑇 ⟩𝑚 ¬readProhibited(Γ,𝑤)

Γ ⊢ ⟨&𝑤 : &𝑤⟩𝑙𝜎 ⊣ Γ
(T-ImmBorrow)

Γ1 ⊢ ⟨𝑡1 :𝑇1⟩𝑙𝜎 ⊣ Γ2 . . . Γ𝑛 ⊢ ⟨𝑡𝑛 :𝑇𝑛⟩𝑙𝜎 ⊣ Γ𝑛+1

Γ1 ⊢ ⟨𝑡 :𝑇𝑛⟩𝑙𝜎 ⊣ Γ𝑛+1

(T-Seq)

Γ1 ⊢ ⟨𝑡 :𝑇 ⟩𝑚𝜎 ⊣ Γ2 Γ2 ⊢𝑇 ⪰ 𝑙 Γ3 = drop(Γ2,𝑚)

Γ1 ⊢ ⟨{𝑡} :𝑇 ⟩𝑙𝜎 ⊣ Γ3

(T-Block)

𝑥 ∉ dom(Γ1)
Γ1 ⊢ ⟨𝑡1 :𝑇 ⟩𝑙𝜎 ⊣ Γ2 Γ3 = Γ2 [𝑥 ↦→ ⟨𝑇 ⟩𝑙] Γ3 ⊢ 𝑡2 :𝑇 ′ ⊣ Γ3

Γ1 ⊢ ⟨let mut 𝑥 = 𝑡1;𝑡2 :𝑇 ′⟩𝑙𝜎 ⊣ Γ3

(T-Declare)

Γ1 ⊢𝑤 : ⟨𝑇1⟩𝑚 Γ1 ⊢ ⟨𝑡 :𝑇2⟩𝑙𝜎 ⊣ Γ2 Γ2 ⊢𝑇1 ≈𝑇2

Γ2 ⊢𝑇2 ⪰𝑚 Γ3 = write0(Γ2,𝑤,𝑇2) ¬writeProhibited(Γ3,𝑤)

Γ1 ⊢ ⟨𝑤 = 𝑡 : 𝜖⟩𝑙𝜎 ⊣ Γ3

(T-Assign)

Figure 3.10: Typing Rules for FR

Chapter 4

Capturing A Shape-Shifter: The
Semantic Process

A Formal Foundation for Strategic Rewriting

It was a terrible, indescribable thing vaster than any subway train—a

shapeless congeries of protoplasmic bubbles, faintly self-luminous, and

with myriads of temporary eyes forming and unforming as pustules of

greenish light all over the tunnel-filling front that bore down upon us

. . .And at last we remembered that the daemoniac shoggoths — given life,

thought, and plastic organ patterns solely by the Old Ones, and having

no language save that which the dot-groups expressed — had likewise

no voice save the imitated accents of their bygone masters.

— H. P. Lovecraft “From the Mountains of Madness”

Prologue

S
hoggoth, as illustrated in the quotation, is a Lovecraftian shape-shifting

monster, making the sound “Tekeli-li, Tekeli-li” which can no longer be un-

derstood by anyone. In this chapter, we thoroughly discuss a foundational

study of a domain specific programming language — a strategic rewriting language

for syntactic transformations, which previously lacked a formal treatment. By making

93

94 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

a metaphorical connection, we named the study Shoggoth and published it under the

title Shoggoth: A Formal Foundation for Strategic Rewriting.

In chapter 1, we briefly discussed that conceptually it is intriguing to explore the

relationship between syntax and semantics within the context of strategic rewriting.

Since term rewriting, as a technique of syntactic transformations, encodes the seman-

tics of some programs, and compositions of each individual term rewriting step form

strategies, of which the straightforward syntax is given by a strategic rewriting lan-

guage, whose semantics featuring non-termination and non-deterministic executions

is complicated and worth studying to allow us to formally understand and reason

about the composition of these rewrites.

In this chapter, we utilise three formal semantic models of programming lan-

guages, namely, denotational semantics, big-step operational semantics, and axiomatic

semantics, to analyse a core calculus of a set of strategic rewriting languages, and dis-

cuss how these models relate to each other.

4.1 Introduction

Strategic rewriting allows programmers to compose rewrite rules and control their

application. Dedicated strategy languages, such as Stratego (Visser et al., 1998; Visser,

2001) and more recently Elevate (Hagedorn et al., 2023, 2020), provide combinators

for composing rewrite rules into larger strategies, as well as traversals to describe the

location at which rewrite strategies are applied.

Strategic rewriting has many important practical applications. For instance, Strat-

ego is used to specify the semantics of programming languages by writing inter-

preters with rewrite strategies in the Spoofax language workbench (Wachsmuth et al.,

2014). Elevate is used to describe compiler optimisations for generating fast code

achieving competitive performance to the state-of-the art machine learning compiler

TVM (Hagedorn et al., 2020). Strategic rewriting is also used in domains ranging

from generic programming (Lämmel and Visser, 2002) to tactic languages in proof

assistants (Sozeau, 2014).

To give some examples of strategic rewriting, rewrite rules like addid and addcom

shown below are what we call atomic strategies:

addid : 0+𝑎⇝ 𝑎 addcom : 𝑎 +𝑏⇝ 𝑏 +𝑎

These two strategies can be composed into a new strategy using a sequential compo-

4.1. Introduction 95

sition combinator (;), such a composed strategy is shown below:

addcom ; addid

This strategy instructs to execute the atomic strategy addid after the execution of the

atomic strategy addcom. It can rewrite an expression 3+ 0 into 3. We introduce the

formal syntax of strategies together with more examples in section 4.2.

Compositions of rewrites easily become complex. For example, Hagedorn et al.

(2020) report that for performing their compiler optimisations up to 60,000 rewrite

steps are required. To orchestrate such long rewrite sequences, strategy languages

provide various combinators for composing strategies together and traversals for ap-

plying strategies to different sub-expressions within the given abstract syntax tree.

Together with support for recursion, these combinators and traversals are capable of

modelling the complex rewrite sequences required in practical applications.

This capability comes at the cost of semantic complexity, as strategies can be non-

deterministic, they may give an error which triggers backtracking, and they may

diverge due to the presence of general recursion. Such a combination of features in-

troduces a lot of semantic subtleties, which make it easy to define not well-behaved

strategies by mistake. For example, a strategy that does not terminate as it repeat-

edly tries to apply a rewrite. Similarly, it is easy to compose incompatible rewrites

that will fail for every possible input expression. Finally, even if a rewrite strategy

successfully terminates, it may not do what it was supposed to do by rewriting the

input expression into an undesired form.

The goal of this chapter is to provide a rigorous treatment of strategic rewriting,

that we believe is lacking so far. Considering that strategic rewriting has various

application domains but has problematic behaviours, a rigorous formal understanding

of strategic rewriting is required to model and analyse its semantic subtleties as well

as reason about the execution of strategies. Therefore, we present Shoggoth: a formal

foundation for reasoning about strategic rewriting.

We start with introducing the formal syntax of System S, a formal core strat-

egy language originally introduced by Visser and Benaissa (1998). Some example

strategies are sketched to give the gist of strategic rewriting as well. We then give

a comprehensive semantic accounting of strategic rewriting languages. We define a

denotational semantics for System S, which originally had been given a big-step op-

erational semantics. Our denotational semantics accounts for non-determinism and

errors, and, unlike previous work, also explicitly models divergence. In addition, we

96 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

formalise an extended big-step operational semantics which accounts for diverging

executions, and formally prove the equivalence of our two models via soundness and

computational adequacy theorems. All of our results have been mechanised in Is-

abelle/HOL (Nipkow et al., 2002).

To facilitate formal reasoning about rewriting strategies, we define a weakest pre-

condition calculus that for a given postcondition computes the weakest precondition

that must hold in order for the given strategy to execute successfully and satisfy the

postcondition. Because traversals allow us to apply strategies to sub-expressions of

the input expression, we must know not just which rewrite rules are to be applied,

but also where in the input expression they are to be applied, in order to determine

the weakest precondition. To accomplish this, our weakest precondition calculus is

location-based: weakest preconditions are not just based on the given strategy and

desired postcondition, but also depend on the location at which the strategy is to be

applied in the input expression. We have mechanised the definition of the weakest

precondition calculus in Isabelle/HOL and formally proven its soundness with respect

to the denotational semantics.

Finally, we show how to use the weakest precondition calculus to reason about

rewrite strategies by applying it to various examples, including termination, that a

strategy is well-composed, and that a rewrite strategy satisfies a particular postcondi-

tion after its execution. One of our examples is a strategy for 𝛽𝜂-normalisation taken

from the Elevate project by Hagedorn et al. (2020), demonstrating the applicability of

our work to practical scenarios.

In summary, we make the following contributions:

• We design, formalise and mechanise using Isabelle/HOL the semantics of Sys-

tem S, including both denotational and operational models with a full account-

ing of nondeterminism, errors, and divergence. We prove these two semantics

equivalent (Section 4.3).

• We design, formalise and mechanise using Isabelle/HOL a location-based weak-

est precondition calculus for System S. We prove its soundness with respect to

the denotational semantics (Section 4.4).

• We demonstrate how to use the weakest precondition calculus to prove practi-

cal useful properties of strategic rewriting (Section 4.5):

– that a strategy terminates, i.e., that is does not diverge;

4.2. The Syntax of System S 97

– that a strategy is well-composed, i.e., that there exist input expressions for

which the strategy execution will succeed;

– that a desired property is satisfied after execution of the strategy.

Before stepping into the formalisation of System S, in the next section we present

the syntax of System S as well as some example strategies to facilitate the understand-

ing of strategic rewriting.

4.2 The Syntax of System S

System S (Visser and Benaissa, 1998) is a core calculus providing basic constructs of

strategic rewriting, including atomic strategies (rewrite rules) and operators compos-

ing strategies and performing expression traversals in an abstract syntax tree (AST).

A successful execution of a strategy transforms an expression into some other ex-

pression while preserving its semantics. The expressions being rewritten can either

be Leaf s or nodes, in general, taking the form of:

Expression(E) 𝑒 ::= Leaf |
n
𝑒𝑒

Figure 4.1 presents the syntax of strategies in System S. We use S to denote the

set of all strategies. Variables, atomic strategies, SKIP and ABORT are basic strategies.

Basic strategies are not decomposable. An atomic strategy is simply a rewrite rule. For

instance, the commutativity of addition addcom and commutativity of multiplication

multcom are atomic strategies:

addcom : 𝑎 +𝑏⇝ 𝑏 +𝑎 Commutativity of addition

multcom : 𝑎 ∗𝑏⇝ 𝑏 ∗𝑎 Commutativity of multiplication

SKIP can always be executed successfully while executing ABORT would always

cause failure. To compose strategies, one can make use of combinators including se-

quential composition (;), left choice (<+) and nondeterministic choice (<+>). Sequen-

tial composition instructs to execute two strategies one after the other. Left choice

prefers executing the strategy at the left hand side of the combinator over the strat-

egy at the right hand side of the operator while nondeterministic choice decides to

execute one of the given two strategy nondeterministically. In addition, one, some

and all are traversals that navigate within the AST. Intuitively, one(𝑠) applies 𝑠 to

98 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

Strategy(S) 𝑠 ::= atomic | 𝑋 | SKIP | ABORT

| 𝑠 ; 𝑠 | 𝑠 <+ 𝑠 | 𝑠 <+> 𝑠

| one(𝑠) | some(𝑠) | all(𝑠)

| 𝜇𝑋 .𝑠

Figure 4.1: The Syntax of System S

one immediate sub-expression of an input expression, some(𝑠) applies 𝑠 to as many

immediate sub-expressions of an input expression as possible and all(𝑠) applies 𝑠 to

all immediate sub-expressions of an input expression. Lastly, System S provides a

fixed-point operator to model recursion.

Comparison of the expressiveness to the original System S One difference

between our formalism and the original System S is that we abstract away the term

building details for atomic strategies, instead modelling atomic strategies as partial

functions. We believe that applying this abstraction does not limit the expressive-

ness of our system. In fact, the purpose of such a design is to allow the flexibility

of the term languages, not only limited to the original System S, but also capturing

other strategic rewriting languages that use term constructs that are different from

System S. Moreover, this design enables us to focus on reasoning about properties

of compositions of rewriting strategies that hold independent of the term building

behaviour.

Composing strategies We can compose strategies together with these combina-

tors, traversals and the fixed-point operator to define more strategies. For example,

we define a strategy try(𝑠) using left choice and SKIP which attempts to apply a strat-

egy 𝑠 to an input expression. If an error occurs, then it will leave the input expression

unchanged by executing the strategy SKIP:

try(𝑠) := 𝑠 <+ SKIP

With the fixed-point operator and sequential composition, we can then define a strat-

egy repeat (𝑠) which keeps applying a strategy 𝑠 to an input expression until its no

longer applicable:

repeat (𝑠) := 𝜇𝑋 .try(𝑠 ; 𝑋)

4.2. The Syntax of System S 99

With the fixed-point operator, the traversal one(𝑠) and left choice, we can define top-

down and bottom-up traversals in an AST:

topDown(𝑠) := 𝜇𝑋 .(𝑠 <+ one(𝑋)) bottomUp(𝑠) := 𝜇𝑋 .(one(𝑋) <+ 𝑠)

We can further compose repeat (𝑠) and topDown(𝑠) to define a strategy normalise(𝑠),
which keeps applying a strategy 𝑠 to all sub-expressions of an input expression until

it is no longer applicable:

normalise(𝑠) := repeat (topDown(𝑠))

The normalise strategy is very commonly used for expressing program transforma-

tions. Given beta and eta reductions for 𝜆-expressions, we can use the normalisation

strategy normalise(beta <+ eta) for normalising an input 𝜆-expression into its 𝛽𝜂-

normal form.

As previously mentioned, the composition of strategies can be invalid and the ex-

ecutions of strategies are not always successful. For instance, the strategy multcom ;

addcom is not well composed since it cannot be successfully executed on any input ex-

pression. repeat (SKIP) is a strategy that cannot terminate. Although normalise(beta <+
eta) can certainly be successfully executed on some input expressions, on other in-

puts it may not terminate. It is important to know that when it terminates, it will

indeed leave the expression in 𝛽𝜂-normal form.

To reason about the successful and unsuccessful executions of strategies, we de-

sign the location-based weakest precondition calculus which is discussed in section 4.4.

With this calculus, we are able to detect bad strategies that do not have successful

executions, like multcom ; addcom and repeat (SKIP), by concluding that there is no

input expression that can be successfully rewritten by such strategies into a desired

form. Also, for a good strategy that has successful executions, we are able to distin-

guish inputs that indeed lead to successful executions of the strategy and inputs that

lead to erroneous or diverging executions. Such reasoning power is demonstrated in

section 4.5.

To design the location-based weakest precondition calculus, we need to under-

stand the behaviours of executing these strategies in System S. Therefore, before in-

troducing the calculus and its reasoning power, we firstly study the formal semantics

of System S.

100 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

4.3 The Semantics of System S

For given collections of expressions E, System S defines nondeterministic executions

for given strategies that can result in expressions or errors. We extend the original

System S by allowing divergence as a possible result of executing a strategy. Thus,

applying a strategy to an expression can result in expressions, an error or divergence.

4.3.1 The Plotkin Powerdomain

We provide a denotational semantics of System S as an instance of Plotkin’s pow-

erdomain construction (Plotkin, 1976), which allows us to assign least fixed points

as the semantics of the recursion construct. An 𝜔-complete partial order (𝜔-cpo) is

a partially ordered set (𝑋,⪯) in which each 𝜔-chain (𝑥1 ⪯ 𝑥2 ⪯ 𝑥3 ⪯ . . .) has a least

upper bound. A function 𝑓 : 𝑋 → 𝑋 on such a set is continuous if for each 𝜔-chain

𝑥1 ⪯ 𝑥2 ⪯ 𝑥3 ⪯ . . . with least upper bound 𝑥 , one has that 𝑓 (𝑥) is the least upper

bound of the set {𝑓 (𝑥1), 𝑓 (𝑥2), 𝑓 (𝑥3), . . . }. A continuous function is certainly mono-

tone, in the sense that 𝑥1 ⪯ 𝑥2 implies 𝑓 (𝑥1) ⪯ 𝑓 (𝑥2) – this follows by considering the

𝜔-chain 𝑥1 ⪯ 𝑥2 ⪯ 𝑥2 ⪯ 𝑥2 ⪯ . . . , and its least upper bound 𝑥2. Now Kleene’s fixed-

point theorem says that each continuous function 𝑓 on an𝜔-cpo with a least element

has a least fixed point.

Consider a nondeterministic, possibly diverging, algorithm that transforms values

into values. If V is the set of values, this algorithm can be modelled as a function

𝑓 : V → P¬∅ (V⊥), where P¬∅ (𝑋) is the set of non-empty subsets of 𝑋 , the non-

empty-powerset, and V⊥ :=V⊎{⊥} is the set in which we embed V together with

a new element ⊥. The newly added element ⊥ represents the outcome where the

algorithm diverges. We equip the set V⊥ with a partial order by defining:

𝑥 ⪯ 𝑦 ⇐⇒ 𝑥 = ⊥∨𝑥 = 𝑦 .

This fits with the intuition that ⊥ represents a computation that has not yet termi-

nated, and 𝑥 ⪯ 𝑦 holds when 𝑦 is a later stage of the computation 𝑥 .

Terminated computations are identified by the values they compute. We compare

sets of values using the Egli-Milner ordering:

𝐴 ⪯ 𝐵 ⇐⇒ (∀𝑥 ∈ 𝐴. ∃𝑦 ∈ 𝐵. 𝑥 ⪯ 𝑦) ∧ (∀𝑦 ∈ 𝐵. ∃𝑥 ∈ 𝐴. 𝑥 ⪯ 𝑦)

4.3. The Semantics of System S 101

Lifting a partial order from elements to sets in this

fashion always yields a preorder. For a flat domain

V⊥, ⪯ is a partial order on P¬∅ (V⊥). It is charac-

terised by:

𝐴 ⪯ 𝐵 ⇐⇒ 𝐴 = 𝐵∨ ((⊥ ∈ 𝐴) ∧𝐴\{⊥} ⊆ 𝐵) (Porcupine ordering)

The resulting poset P¬∅ (V⊥) is an 𝜔-cpo. Each 𝜔-chain either enters a spine of the

porcupine, and thus contains a largest element which is its least upper bound, or ⊥
is a member of all elements in the chain, so that its least upper bound is simply the

union of all sets in the chain.

Aside on the powerdomain construction and the Egli-Milner ordering. To

give some further insight into the powerdomain construction and the Egli-Milner

ordering, recall the following well-known characterisation. Hennessy and Plotkin

(1979, Remark after Lemma 3.5) show that Plotkin’s (1976) powerdomain construc-

tion extends to all 𝜔-complete partial orders (𝜔-cpos) by sending each 𝜔-cpo to the

free semi-lattice over it. In detail, given an 𝜔-cpo 𝑋 , we define a free semi-lattice

over 𝑋 as an 𝜔-cpo 𝐷𝑋 , together with a Scott-continuous function 𝜂 :𝑋 → 𝐷𝑋 and a

Scott-continuous binary operation: ∨ : (𝐷𝑋)2 →𝐷𝑋 that is associative, commutative,

and idempotent. A free semi-lattice always exists, but its explicit description may be

complicated. Hennessy and Plotkin show that, when 𝜔-cpo is 𝜔-algebraic, we can

construct the free semi-lattice explicitly by taking 𝐷𝑋 := P¬∅𝑋 to be the powerdo-

main construction with the Egli-Milner ordering, 𝜂 (𝑥) := {𝑥} as the embedding of 𝑋

into this semi-lattice, and sub-set union as the binary operation. So in a specific and

technical sense, the powerdomain 𝐷𝑋 is the simplest extension of the 𝜔-cpo 𝑋 with

an associative, idempotent and commutative binary operator.

(end of aside)

In our mechanised Isabelle/HOL formalisation, we opt to use posets that are com-

plete with respect to all chains, not merely countable or directed ones, without main-

taining continuity as an assumption. The stronger assumption on posets allows us

to weaken the assumption on functions: we only require monotonicity to ensure ex-

istence of fixed points. This choice was made purely for ease of formalisation, as

Isabelle/HOL already includes a library for chain-complete partial orders. While this

means that our domain may contain monotone functions that do not correspond to

any expressible strategy, and that Hennessy and Plotkin’s characterisation does not

102 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

directly apply, our meta-theoretic results below show how to relate our semantics to

the operational semantics, and our reasoning examples show that this semantics suf-

fices to reason about practically interesting examples. We conjecture that our results

will easily carry over to a semantics defined with 𝜔-cpos.

4.3.2 Formalised Denotational Semantics

We now present and discuss the denotational semantics for System S, capturing suc-

cessful and erroneous executions of strategies as well as nondeterminism, divergence

and recursion. A strategy is a nondeterministic algorithm/function that rewrites ex-

pressions into expressions. This nondeterministic algorithm can sometimes yield an

error err instead of an expression, and it might fail to terminate. In the latter case,

we say that it yields the value div. Formally, we instantiate Plotkin’s powerdomain

construction from the previous section by setting V := E∪{err} and ⊥ := div, noting

it is a flat domain. We denote the resulting powerdomain by:

𝔇𝑝 := P¬∅ (E∪ {err} ∪ {div}) ordered by:

𝐴 ⪯ 𝐵 ⇐⇒ 𝐴 = 𝐵∨ ((div ∈ 𝐴) ∧𝐴\{div} ⊆ 𝐵)

We define the denotational semantics of System S over the point-wise lifting of

the powerdomain:

𝔇 = E→𝔇𝑝

To define the denotational semantics of strategies in a concise manner, we provide

semantic combinators and traversals that encapsulate the meaning of syntactic com-

binators and traversals.

Figure 4.2 illustrates the definitions of the combinators. The definition of sequen-

tial composition 𝑠 ;𝑠 𝑡 is straightforward, indicating that the execution of the strategy

𝑡 depends on the result of applying 𝑠 to the input expression 𝑒 . If applying 𝑠 to 𝑒 re-

sults in an error or divergence, the sequential composition will produce an error and

divergence, respectively. Otherwise, the result of the sequential composition 𝑠 ;𝑠 𝑡 is

produced by applying 𝑡 to the expression obtained by the execution of 𝑠 . The defini-

tion of left choice 𝑠<+𝑠𝑡 prioritises the execution of the strategy 𝑠 over 𝑡 . The strategy

𝑡 will only be executed if the execution of 𝑠 produces an error. Our treatment of

nondeterminism is demonic with respect to divergence while angelic with respect to

errors. If either the execution of 𝑠 or 𝑡 divergences, then the nondeterministic choice

4.3. The Semantics of System S 103

(;𝑠) : 𝔇→𝔇→𝔇

(𝑠 ;𝑠 𝑡) (𝑒) =
⋃

{𝑡 (𝑒′) |𝑒′ ∈ 𝑠 (𝑒) ∩E} ∪ {𝑟 | 𝑟 ∈ 𝑠 (𝑒) ∩ {div, err}}

(Sequential composition)

(<+𝑠) : 𝔇→𝔇→𝔇

(𝑠 <+𝑠 𝑡) (𝑒) = (𝑠 (𝑒) \ {err}) ∪ {𝑒′ |𝑒′ ∈ 𝑡 (𝑒) ∧ err ∈ 𝑠 (𝑒)}

(Left choice)

(<+>𝑠) : 𝔇→𝔇→𝔇

(𝑠 <+>𝑠 𝑡) (𝑒) = {𝑒′ |𝑒′ ∈ 𝑠 (𝑒) ∩E} ∪ {div | div ∈ 𝑠 (𝑒)}
∪ {𝑒′ |𝑒′ ∈ 𝑡 (𝑒) ∩E} ∪ {div | div ∈ 𝑡 (𝑒)} ∪ {err | err ∈ 𝑠 (𝑒) ∩ 𝑡 (𝑒)}

(Nondeterministic choice)

Figure 4.2: Semantic Combinators of System S

𝑠<+>𝑠𝑡 diverges as well. The nondeterministic choice will only result in an error if

both executions of 𝑠 and 𝑡 result in an error. When both 𝑠 and 𝑡 give cause for a

successful execution, the choice is nondeterministic.

These combinators are sufficient for composing strategies applied to the root of

an AST. System S also provide traversals one, some and all to apply strategies to sub-

expressions. Their semantics are shown in figure 4.3. The traversal one𝑠 (𝑠) (𝑒) non-

deterministically chooses one immediate sub-expression of 𝑒 and applies strategy 𝑠

to it. The treatment of nondeterminism here is again demonic with respect to diver-

gence and angelic with respect to errors. If applying 𝑠 to one of the sub-expressions

results in divergence, one𝑠 (𝑠) will diverge. An error will only occur when 𝑒 has no

sub-expression or applying 𝑠 to all sub-expressions of 𝑒 results in error. The traversal

some𝑠 (𝑠) (𝑒) applies 𝑠 to as many immediate sub-expressions of 𝑒 as possible. Its di-

vergence and erroneous situations are the same as one𝑠 . The successful execution of

all𝑠 (𝑠) on an input expression 𝑒 requires successful application of 𝑠 to all immediate

sub-expressions of 𝑒 or 𝑒 being a Leaf . If applying 𝑠 to one sub-expression leads to an

error or divergence, all𝑠 (𝑠) (𝑒) yields err or div, respectively. For simplicity of the pre-

sentation and illustration, we have restricted ourselves to binary trees in this study.

104 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

(ones) : 𝔇→𝔇

ones (𝑠) (𝑒) = {
𝑛

𝑒2𝑒′
1

|𝑒 = 𝑛

𝑒2𝑒1

∧𝑒′
1
∈ 𝑠 (𝑒1) ∩E}

∪ {
𝑛

𝑒′
2

𝑒1

|𝑒 = 𝑛

𝑒2𝑒1

∧𝑒′
2
∈ 𝑠 (𝑒2) ∩E}

∪ {div |𝑒 = 𝑛

𝑒2𝑒1

∧div ∈ 𝑠 (𝑒1) ∪𝑠 (𝑒2)}

∪ {err |𝑒 = Leaf ∨ (𝑒 = 𝑛

𝑒2𝑒1

∧ err ∈ 𝑠 (𝑒1) ∩𝑠 (𝑒2))}

(One)

(somes) : 𝔇→𝔇

somes (𝑠) (𝑒) = {
𝑛

𝑒′
2

𝑒′
1

|𝑒 = 𝑛

𝑒2𝑒1

∧𝑒′
1
∈ 𝑠 (𝑒1) ∩E∧𝑒′

2
∈ 𝑠 (𝑒2) ∩E}

∪ {
𝑛

𝑒2𝑒′
1

|𝑒 = 𝑛

𝑒2𝑒1

∧𝑒′
1
∈ 𝑠 (𝑒1) ∩E∧ err ∈ 𝑠 (𝑒2)}

∪ {
𝑛

𝑒′
2

𝑒1

|𝑒 = 𝑛

𝑒2𝑒1

∧𝑒2 ∈ 𝑠 (𝑒2) ∩E∧ err ∈ 𝑠 (𝑒1)}

∪ {div |𝑒 = 𝑛

𝑒2𝑒1

∧div ∈ 𝑠 (𝑒1) ∪𝑠 (𝑒2)}

∪ {err |𝑒 = Leaf ∨ (𝑒 = 𝑛

𝑒2𝑒1

∧ err ∈ 𝑠 (𝑒1) ∩𝑠 (𝑒2))}

(Some)

(alls) : 𝔇→𝔇

alls (𝑠) (𝑒) = {Leaf |𝑒 = Leaf }

∪ {
𝑛

𝑒′
2

𝑒′
1

|𝑒 = 𝑛

𝑒2𝑒1

∧𝑒′
1
∈ 𝑠 (𝑒1) ∩E∧𝑒′

2
∈ 𝑠 (𝑒2) ∩E}

∪ {div |𝑒 = 𝑛

𝑒2𝑒1

∧div ∈ 𝑠 (𝑒1) ∪𝑠 (𝑒2)}

∪ {err |𝑒 = 𝑛

𝑒2𝑒1

∧ err ∈ 𝑠 (𝑒1) ∪𝑠 (𝑒2)}

(All)

Figure 4.3: Semantic Traversals of System S

4.3. The Semantics of System S 105

Variable(V) 𝑋 𝑌 𝑍 . . .

Semantic Environment(Γ𝑆) 𝜉 : V→𝔇

⟦S⟧ : Γ𝑆 →𝔇

⟦𝑋⟧𝜉 = 𝜉𝑋

⟦atomic⟧𝜉 = 𝜆𝑒.{atomic(𝑒) | atomic(𝑒)def} ∪ {err | atomic(𝑒)undef}

⟦SKIP⟧𝜉 = 𝜆𝑒.{𝑒}

⟦ABORT⟧𝜉 = 𝜆𝑒.{err}

⟦𝑠 ; 𝑡⟧𝜉 = ⟦𝑠⟧𝜉 ;𝑠 ⟦𝑡⟧𝜉 (Sequential composition)

⟦𝑠 <+ 𝑡⟧𝜉 = ⟦𝑠⟧𝜉 <+𝑠 ⟦𝑡⟧𝜉 (Left choice)

⟦𝑠 <+> 𝑡⟧𝜉 = ⟦𝑠⟧𝜉 <+>𝑠 ⟦𝑡⟧𝜉 (Nondeterministic choice)

⟦one(𝑠)⟧𝜉 = one𝑠 (⟦𝑠⟧𝜉) (One)

⟦some(𝑠)⟧𝜉 = some𝑠 (⟦𝑠⟧𝜉) (Some)

⟦all(𝑠)⟧𝜉 = all𝑠 (⟦𝑠⟧𝜉) (All)

⟦𝜇𝑋 .𝑠⟧𝜉 = 𝜇X.⟦𝑠⟧(𝜉 [𝑋 ↦→ X]) (Fixed point)

Figure 4.4: Denotational Semantics of System S

However, the traversals can easily be generalised to ASTs with wider branching.

With the semantic combinators and semantic traversals introduced, we provide

the denotational semantics for System S shown in figure 4.4. The semantics of a strat-

egy is modelled as a function that takes in a semantic environment 𝜉 , which is a func-

tion mapping variables to elements of 𝔇.

The semantics of a variable consists of looking up the variable in a given semantic

environment. We model an atomic strategy as a partial function, which can success-

fully rewrite an input expression into an output expression when it is defined for

the input expression. When an atomic strategy is not defined for an input expres-

sion, applying it to the input expression will result in an error. SKIP is a strategy

that always rewrites an input expression to itself while ABORT is a strategy that al-

ways produces an err . The denotational semantics of combinators and traversals are

straightforwardly defined with the semantic combinators and traversals. Lastly, the

semantics of the fixed-point operator is the least fixed point in our domain, where

we extend the semantic environment with a mapping from the syntactic fixed-point

106 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

variable to the fixed point in our domain. We denote this environment extension with

the syntax 𝜉 [𝑋 ↦→ 𝑑].

The denotational semantics is monotone Given two environments 𝜉1 and 𝜉2, if

the values obtained from looking up the variables in the environments satisfy the

ordering 𝜉1(𝑋) ⪯ 𝜉2(𝑋) for any variable 𝑋 , the values obtained from evaluation of

a strategy 𝑠 with these environments should also satisfy the ordering ⟦𝑠⟧𝜉1 ⪯ ⟦𝑠⟧𝜉2.

Formally, we present the monotonicity theorem 4.3.1:

Theorem 4.3.1 (Semantics monotonicity theorem). For given environments 𝜉1 and 𝜉2,

and strategy 𝑠 we have:

∀𝑋 .𝜉1(𝑋) ⪯ 𝜉2(𝑋)

⟦𝑠⟧𝜉1 ⪯ ⟦𝑠⟧𝜉2

We prove this theorem in Isabelle/HOL by structural induction on the strategy 𝑠 .

𝑒
SKIP−−→ 𝑒

(Skip)

𝑒
ABORT−−−−→ err

(Abort)

𝑒
atomic−−−→ atomic(𝑒)

(Atomic)

𝑒
𝑠1−→ 𝑒1 𝑒1

𝑠2−→ 𝑒2

𝑒
𝑠1

;𝑠2−−−→ 𝑒2

(SeqComp)

𝑒
𝑠1−→ err

𝑒
𝑠1

;𝑠2−−−→ err
(SeqCompErr(1))

𝑒
𝑠1−→ 𝑒1 𝑒1

𝑠2−→ err

𝑒
𝑠1

;𝑠2−−−→ err
(SeqCompErr(2))

𝑒
𝑠1−→ 𝑒1

𝑒
𝑠1<+𝑠2−−−−−→ 𝑒1

(LChoice (L))

𝑒
𝑠1−→ err 𝑒

𝑠2−→ 𝑒2

𝑒
𝑠1<+𝑠2−−−−−→ 𝑒2

(LChoice (R))

𝑒
𝑠1−→ err 𝑒

𝑠2−→ err

𝑒
𝑠1<+𝑠2−−−−−→ err

(LChoiceErr)

𝑒
𝑠1−→ 𝑒1

𝑒
𝑠1<+>𝑠2−−−−−−→ 𝑒1

(Choice(L))

𝑒
𝑠2−→ 𝑒2

𝑒
𝑠1<+>𝑠2−−−−−−→ 𝑒2

(Choice(R))

𝑒
𝑠1−→ err 𝑒

𝑠2−→ err

𝑒
𝑠1<+>𝑠2−−−−−−→ err

(ChoiceErr)

𝑒
𝑠 [𝑋 :=𝜇𝑋 .𝑠]
−−−−−−−−→ 𝑒1

𝑒
𝜇𝑋 .𝑠
−−−→ 𝑒1

(FixedPoint)

𝑒
𝑠 [𝑋 :=𝜇𝑋 .𝑠]
−−−−−−−−→ err

𝑒
𝜇𝑋 .𝑠
−−−→ err

(FixedPointErr)

Figure 4.5: Big-step operational semantics of non-diverging cases for basic strategies, combi-

nators, and the fixed-point operator

4.3. The Semantics of System S 107

Leaf
one(𝑠)
−−−−→ err

(One(Id))

Leaf
some(𝑠)
−−−−−→ err

(Some(Id))

Leaf
all(𝑠)
−−−−→ Leaf

(All(Id))

𝑒1

𝑠−→ 𝑒′
1

𝑛

𝑒2𝑒1

one(𝑠)
−−−−→

𝑛

𝑒2𝑒′
1

(One(L))

𝑒2

𝑠−→ 𝑒′
2

𝑛

𝑒2𝑒1

one(𝑠)
−−−−→

𝑛

𝑒′
2

𝑒1

(One(R))

𝑒1

𝑠−→ err 𝑒2

𝑠−→ err

𝑛

𝑒2𝑒1

one(𝑠)
−−−−→ err

(OneErr)

𝑒1

𝑠−→ 𝑒′
1

𝑒2

𝑠−→ err

𝑛

𝑒2𝑒1

some(𝑠)
−−−−−→

𝑛

𝑒2𝑒′
1

(Some(L))

𝑒1

𝑠−→ err 𝑒2

𝑠−→ 𝑒′
2

𝑛

𝑒2𝑒1

some(𝑠)
−−−−−→

𝑛

𝑒′
2

𝑒1

(Some(R))

𝑒1

𝑠−→ 𝑒′
1

𝑒2

𝑠−→ 𝑒′
2

𝑛

𝑒2𝑒1

some(𝑠)
−−−−−→

𝑛

𝑒′
2

𝑒′
1

(Some)

𝑒1

𝑠−→ err 𝑒2

𝑠−→ err

𝑛

𝑒2𝑒1

some(𝑠)
−−−−−→ err

(SomeErr)

𝑒1

𝑠−→ 𝑒′
1

𝑒2

𝑠−→ 𝑒′
2

𝑛

𝑒2𝑒1

all(𝑠)
−−−−→

𝑛

𝑒′
2

𝑒′
1

(All)

𝑒1

𝑠−→ err

𝑛

𝑒2𝑒1

all(𝑠)
−−−−→ err

(AllErr(L))

𝑒2

𝑠−→ err

𝑛

𝑒2𝑒1

all(𝑠)
−−−−→ err

(AllErr(R))

Figure 4.6: Big-step operational semantics of non-diverging cases for traversals

4.3.3 Formalised Big-Step Operational Semantics

In this section, we present the formalised big-step operational semantics of System S,

with our extension allowing for divergent strategies. Figure 4.5 and figure 4.6 depict

the big-step operational semantics for the non-diverging cases of System S. These

cases are essentially the same as those of Visser and Benaissa (1998), albeit with the

aforementioned simplification to binary trees applied.
1

The semantic rules are given

1
Visser and Benaissa (1998) denote error by ↑.

108 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

in a straightforward way.

On top of these rules for terminating cases, we define the semantics for divergence

as the coinductive judgement Leroy and Grall (2009) satisfying the rules shown in

figure 4.7. Here we use 𝑒
𝑠−→
∞

to indicate that the evaluation of an expression 𝑒 by a

strategy 𝑠 leads to divergence.

𝑒
𝑠1−→
∞

𝑒
𝑠1

;𝑠2−−−→
∞

(SeqCompDiv(1))

𝑒
𝑠1−→ 𝑒1 𝑒1

𝑠2−→
∞

𝑒
𝑠1

;𝑠2−−−→
∞

(SeqCompDiv(2))

𝑒
𝑠1−→
∞

𝑒
𝑠1<+𝑠2−−−−−→
∞

(LChoiceDiv(1))

𝑒
𝑠1−→ err 𝑒

𝑠2−→
∞

𝑒
𝑠1<+𝑠2−−−−−→
∞

(LChoiceDiv(2))

𝑒
𝑠1−→
∞

𝑒
𝑠1<+>𝑠2−−−−−−→

∞

(ChoiceDiv(1))

𝑒
𝑠2−→
∞

𝑒
𝑠1<+>𝑠2−−−−−−→

∞

(ChoiceDiv(2))

𝑒1

𝑠−→
∞

𝑛

𝑒2𝑒1

one(𝑠)
−−−−→

∞

(OneDiv(1))

𝑒2

𝑠−→
∞

𝑛

𝑒2𝑒1

one(𝑠)
−−−−→

∞

(OneDiv(2))

𝑒1

𝑠−→
∞

𝑛

𝑒2𝑒1

some(𝑠)
−−−−−→

∞

(SomeDiv (1))

𝑒2

𝑠−→
∞

𝑛

𝑒2𝑒1

some(𝑠)
−−−−−→

∞

(SomeDiv (2))

𝑒1

𝑠−→
∞

𝑛

𝑒2𝑒1

all(𝑠)
−−−−→

∞

(AllDiv (1))

𝑒2

𝑠−→
∞

𝑛

𝑒2𝑒1

all(𝑠)
−−−−→

∞

(AllDiv (2))

𝑒
𝑠 [𝑋 :=𝜇𝑋 .𝑠]
−−−−−−−−→

∞

𝑒
𝜇𝑋 .𝑠
−−−→
∞

(FixedPointDiv)

Figure 4.7: Big-step operational semantics of diverging cases

4.3. The Semantics of System S 109

4.3.4 The Denotational Semantics is Equivalent toThe Big-Step

Operational Semantics

In section 4.3.2 and section 4.3.3, we have provided two styles of semantics for System

S. It is essential to prove that these two semantics are equivalent, since we would like

our formal semantics to provide unambiguous and unique interpretation of strategies

in System S. In addition, with the equivalence of these two semantics established, we

only need to refer to one of them to prove some properties of System S and they

should also hold for the other semantics.

We reason about the equivalence between the denotational semantics and big-

step operational semantics via computational soundness and computational adequacy

theorems. More specifically, we have a pair of computational soundness and adequacy

theorems to relate the non-diverging cases and a pair of computational soundness and

adequacy theorems to relate the diverging cases.

Firstly, we show that if an expression 𝑒 is evaluated to another expression or an

error using the big-step operational semantics of a strategy 𝑠♣, this result must also

be in the set obtained by executing the denotational semantics of 𝑠♣ with the given

expression 𝑒 . Formally, this is described by our first computational soundness theo-

rem 4.3.2. The subscript ♣ indicates that 𝑠♣ is a closed strategy: a strategy with no free

variables, i.e. fv(𝑠♣) = ∅.

Theorem 4.3.2 (Computational soundness theorem one). For a given closed strategy

𝑠♣, and any environment 𝜉 , we have for an arbitrary expression 𝑒 and result 𝑟 :

𝑒
𝑠♣−→ 𝑟

𝑟 ∈ ⟦𝑠♣⟧𝜉𝑒

We prove this theorem by induction on the derivation of 𝑒
𝑠♣−→ 𝑟 from the rules of

figure 4.5. As the strategy 𝑠♣ is always closed, to instantiate our inductive hypothesis

in the cases for the fixed-point operator, we make use of the following substitution

lemma 4.3.3 to semantically relate the syntactic substitution of a closed strategy 𝑠♣

for a variable 𝑋 in 𝑠 with the strategy 𝑠 under the environment where 𝑋 maps to the

semantics of 𝑠♣.

Lemma 4.3.3 (Substitution lemma one).

⟦𝑠 [𝑋 := 𝑠♣]⟧𝜉 = ⟦𝑠⟧𝜉 [𝑋 ↦→ (⟦𝑠♣⟧𝜉)]

110 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

This lemma can easily be generalised to allow 𝑠♣ to instead be an open strategy, so

long as 𝑋 is not free in 𝑠♣, however our operational semantics only ever substitutes

closed strategies, thus this generalisation is not necessary for proving our semantic

equivalence theorems.

We now prove a computational adequacy theorem, the converse of the computa-

tional soundness theorem 4.3.2. It states that if a non-diverging result 𝑟 is one of the

results of the denotational semantics for a closed strategy 𝑠♣ with an input expres-

sion 𝑒 , then the big-step operational semantics of 𝑠♣ with the input expression 𝑒 will

produce the same result.

Theorem 4.3.4 (Computational adequacy theorem one). For an expression 𝑒 , result 𝑟 ,

and closed strategy 𝑠♣ we have:

𝑟 ∈ ⟦𝑠♣⟧𝜉𝑒 𝑟 ≠ div

𝑒
𝑠♣−→ 𝑟

To prove this theorem, we first generalise to open strategies. To do this, we define

an approximation relation between a closed strategy and an element of our domain,

and state an approximation lemma. Here, we employ, for a simultaneous substitution

𝜃 : V→ S♣, the notation 𝑠 [𝜃] for the application of 𝜃 to all free variables in 𝑠 .

Definition 4.3.1 (Approximation relation one). Given a closed strategy 𝑠♣ and a func-

tion 𝑑 ∈ 𝔇, we say 𝑠♣△𝑑 if and only if for any given input expression 𝑒 , when 𝑟 is a

non-diverging result obtained by applying 𝑑 to 𝑒 , 𝑟 will also be the result of evaluating

the big-step operational semantics of 𝑠♣ with the input expression 𝑒 .

𝑠♣△𝑑 ⇐⇒ ∀𝑒 𝑟 . 𝑟 ∈ 𝑑 (𝑒) ∩ (E∪ {err}) ⇒ 𝑒
𝑠♣−→ 𝑟

Lemma 4.3.5 (Approximation lemma one).

∀𝑦 ∈ fv(𝑠). 𝜃 (𝑦) △𝜉 (𝑦) 𝑠♣ = 𝑠 [𝜃]

𝑠♣△⟦𝑠⟧𝜉

The proof of this lemma is by induction on the strategy 𝑠 , and Scott induction

is required for the fixed point cases. From the approximation lemma, we prove the

computational adequacy theorem 4.3.4 by setting 𝑠 := 𝑠♣. As there are no free variables

in 𝑠♣, the approximation relation trivially implies our goal.

The computational soundness and adequacy theorems presented above state that

the denotational semantics and big-step operational semantics are equivalent for the

4.3. The Semantics of System S 111

non-diverging cases. Next, we present computational soundness and adequacy theo-

rems for divergent strategies.

The computational soundness theorem for the diverging cases states that, if the

evaluation of the big-step operational semantics of a closed strategy 𝑠♣ with an in-

put expression 𝑒 diverges, div must be in the resulting set obtained by executing the

denotational semantics of 𝑠♣ with the given expression 𝑒 .

Theorem 4.3.6 (Computational soundness theorem two).

𝑒
𝑠♣−→
∞

div ∈ ⟦𝑠♣⟧𝜉𝑒

Just as with computational adequacy for non-diverging cases, we must first gen-

eralise to open strategies. We define the second approximation relation together with

an approximation lemma to prove this soundness theorem.

Definition 4.3.2 (Approximation relation two). Given a closed strategy 𝑠♣ and a func-

tion 𝑑 ∈𝔇, we say 𝑠♣ △∞ 𝑑 if and only if for any given input expression 𝑒 , when eval-

uating the big-step operational semantics of 𝑠♣ with the input expression 𝑒 diverges, div

will be obtained by applying 𝑑 to 𝑒 , and we have the ordering 𝑑 (𝑒) ⪯ ⟦𝑠♣⟧𝜉𝑒 .

𝑠♣ △∞ 𝑑 ⇐⇒ ∀𝑒. (𝑒 𝑠♣−→
∞

⇒ div ∈ 𝑑 (𝑒)) ∧𝑑 (𝑒) ⪯ ⟦𝑠♣⟧𝜉𝑒

Lemma 4.3.7 (Approximation lemma two).

∀𝑦 ∈ fv(𝑠). 𝜃 (𝑦) △∞ 𝜉 (𝑦) 𝑠♣ = 𝑠 [𝜃]

𝑠♣ △∞ ⟦𝑠⟧𝜉

The proof of this lemma is (again) by induction on the strategy 𝑠 , where Scott in-

duction is used for the fixed point cases. For the cases which involve terminating

sub-steps, such as sequential composition or left choice, we make use of our sound-

ness theorem for non-diverging cases, theorem 4.3.2. We utilise this approximation

lemma 4.3.7 to prove the computational soundness theorem 4.3.6.

Lastly, we prove the computational adequacy theorem for the diverging cases,

which is again the converse of the soundness theorem 4.3.6. It states that if div is

in a result of executing the denotational semantics of a closed strategy 𝑠♣ with an

input expression 𝑒 , then evaluating the big-step operational semantics with the given

expression 𝑒 leads to divergence.

112 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

Theorem 4.3.8 (Computational adequacy theorem two).

div ∈ ⟦𝑠♣⟧𝜉𝑒

𝑒
𝑠♣−→
∞

We prove this by coinduction over big-step operational semantics for diverging

cases while making use of the computational adequacy theorem 4.3.4 for the non-

diverging cases. Just as with our computational soundness proof for non-diverging

cases, we work only with closed strategies 𝑠♣, and rely on our substitution lemma 4.3.3

for the fixed point cases.

With these two pairs of computational soundness and adequacy theorems, we

can conclude that the denotational semantics and big-step operational semantics are

equivalent. Formally, we obtain:

Theorem 4.3.9 (Equivalence between semantics).

⟦𝑠♣⟧𝜉𝑒 = {𝑟 |𝑒 𝑠♣−→ 𝑟 } ∪ {div |𝑒 𝑠♣−→
∞
}

In this section, we have studied two styles of semantics of System S, namely a de-

notational semantics and a big-step operational semantics. To complete our semantic

accounting, it may be worthwhile for us to study its small-step operational semantics

in the future.

4.4 Location-Based Weakest Precondition Calculus

As we have seen, a strategy either successfully rewrites an expression into another

expression, generates an error, or fails to terminate.

Naturally, we care mainly about the successful executions of a strategy. In par-

ticular, when it rewrites an input expression into another expression that satisfies a

desired property. In order to formally understand successful and unsuccessful exe-

cutions of strategies, we design and formalise a location-based weakest precondition

calculus. Weakest preconditions were introduced by Dijkstra (1975), as an axiomatic

semantics for his guarded command language. Different from other weakest precon-

dition calculi, we introduce the notion of a location in an AST as a parameter in our

calculus for reasoning about traversals, which is discussed in section 4.4.1. Before

presenting the formal definition of the calculus, we recapitulate the definition of a

weakest precondition.

4.4. Location-Based Weakest Precondition Calculus 113

Definition 4.4.1 (Weakest precondition). Given a program 𝑆 and a postcondition 𝑃 ,

the weakest precondition wp(𝑆,𝑃) is an assertion 𝑅𝑤 such that for any precondition 𝑅:

{𝑅}𝑆{𝑃} ⇔ (𝑅 ⇒ 𝑅𝑤)

Here {𝑅}𝑆{𝑃} is a Hoare triple stating that 𝑆 will successfully terminate in a state sat-

isfying assertion 𝑃 if the state before executing 𝑆 satisfies 𝑅. Intuitively, the weakest

precondition of 𝑆 under 𝑃 characterises all those states that lead to successful ter-

mination in a state of 𝑃 when executing 𝑆 . In Dijkstra’s (1975) calculus, a function

wp is defined which, given a program and an assertion as a postcondition, computes

the weakest precondition inductively on the program structure. Bonsangue and Kok

(1992) extend Dijkstra’s calculus to assign weakest preconditions for a fixed-point

operator by additionally including a logic environment as an input to the wp func-

tion, which associates a predicate transformer with each variable. As we also have a

fixed-point operator for general recursion, we do the same in this formalisation.

When dealing with strategies, assertions take the form of sets of expressions, and

a state is an expression we are rewriting. Thus, the weakest precondition is a set of

input expressions for a strategy to be applied to, such that the result of the application

of the strategy will lead to another expression. That means the strategy will neither

yield an error nor diverge. Moreover, the weakest precondition has to guarantee that

an expression of the postcondition is reached.

Definition 4.4.2 (Weakest must succeed precondition). A weakest must succeed pre-

condition takes the form 𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃). This is the set of those expressions that, by apply-

ing strategy s at location l under the logic environment 𝜁 , will be successfully transformed

into expressions satisfying 𝑃 .

To calculate this set of input expressions constituting the weakest must succeed

precondition, we also introduce the following auxiliary function. In fact, 𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃)
and 𝑤𝑝

↑
𝜁⊩𝑠@𝑙

(𝑃) will be defined by mutual induction.

Definition 4.4.3 (Weakest may error precondition). A weakest may error precondi-

tion takes the form of 𝑤𝑝
↑
𝜁⊩𝑠@𝑙

(𝑃). This is the set of those expressions that, by applying

strategy s at location l under the logic environment 𝜁 , will be successfully transformed

into expressions satisfying 𝑃 , or result in error.

114 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

4.4.1 Modelling Traversals

In definitions 4.4.2 and 4.4.3, we introduce the location for specifying the particular

sub-expression to which the strategy 𝑠 should be applied. This allows us to express

that after applying a strategy 𝑠 to the sub-expression at the location 𝑙 of an input

expression 𝑒 , the input expression 𝑒 should be transformed into an expression that

satisfies the postcondition 𝑃 . Consequently, the weakest precondition for traversals

such as one(𝑠), some(𝑠), and all(𝑠) can be defined inductively in terms of the weakest

precondition of 𝑠 , just at different locations.

Kieburtz (2001) proposes an alternative approach, using modal logic for assertions

about traversals. However, it is unclear how this technique could be used to define a

complete calculus. We discuss this in section 4.6.

A location is essentially a path into the abstract syntax tree. Such a path consists

of a sequence of positions, for our binary trees either left (𝓁) or right (𝓇). Positions are

prepended to a location with ⊳ and appended with ⊲. For instance, suppose we have

an AST representing an arithmetic expression 1+3, each sub-expression is located as:

+ (𝜖)

3 (𝜖 ⊲𝓇)1 (𝜖 ⊲𝓁)

With locations being introduced in the assertions, accompanied by the two helper

functions lookup and update discussed in section 4.4.2, we can model the execution of

a strategy at a given location in the input expression, which enables the assignments

of weakest preconditions inductively for traversals just as with other operators.

4.4.2 The Calculus

We now introduce the location-based weakest precondition calculus for System S in

its full formal detail. We first provide definitions of helper functions and essential

notations for the formalisation.

To connect locations and expressions, we introduce two partial functions lookup

and update, shown in figure 4.8. Given a location 𝑙 and an expression 𝑒 , the partial

function lookup returns the sub-expression which is located at the location 𝑙 in an

expression 𝑒 . The function is partial, as it is only defined when the location 𝑙 actually

exists in the expression 𝑒 . The partial function update takes in a set xs ∈ 𝔇𝑝 , and

updates an expression 𝑒 at the location 𝑙 with each expression in xs, resulting in a set of

4.4. Location-Based Weakest Precondition Calculus 115

lookup : L→ E⇀ E (We write it as ⋔𝑙 :L (𝑒 : E) : (𝑒′ : E))

lookup 𝜖 𝑒 = 𝑒

lookup (𝓁 ⊳ 𝑙) 𝑛

𝑒2𝑒1

= lookup 𝑙 𝑒1

lookup (𝓇 ⊳ 𝑙) 𝑛

𝑒2𝑒1

= lookup 𝑙 𝑒2

update : L→ E⇀𝔇𝑝 →𝔇𝑝 (We write it as (𝑑 : 𝔇𝑝)�𝑙 :L (𝑒 : E) : (𝑑′ : 𝔇𝑝))

update 𝜖 𝑒 xs = xs

update (𝓁 ⊳ 𝑙) 𝑛

𝑒2𝑒1

xs = {
𝑛

𝑒2𝑒′
1

|𝑒′
1
∈ (update 𝑙 𝑒1 xs) ∩E} ∪ (xs∩ {err,div})

update (𝓇 ⊳ 𝑙) 𝑛

𝑒2𝑒1

xs = {
𝑛

𝑒′
2

𝑒1

|𝑒′
2
∈ (update 𝑙 𝑒2 xs) ∩E} ∪ (xs∩ {err,div})

Figure 4.8: Helper functions

expressions where each element is obtained by replacing the sub-expression of 𝑒 at the

location 𝑙 with an element of xs, with appropriate handling of errors and divergence.

Figure 4.9 shows the essential notations for defining the weakest precondition

calculus. Since we will again have fixed-point operators in the weakest precondition

calculus, we need to ensure that least fixed points exist, by operating in a domain

which is again a cpo, and show that our wp function is monotone with respect to that

domain. The ordering of our domain 𝔇𝐿 is a point-wise lifted set ordering, of which

the bottom element is the empty set.

Similar to the semantic environment introduced for the denotational semantics in

figure 4.4, the logic environment contains mappings of (fixed point) variables to an

element of our logic domain (which is a function). Since we mutually define weakest

must succeed preconditions and weakest may error preconditions, a fixed-point vari-

able can map to two different functions. We use the tags · (must succeed) and ↑ (may

error) to distinguish these two different mappings.

With these notations and helper partial functions, we provide the location-based

weakest precondition calculus. For presentation purposes, we simplify our definitions

by only considering the cases where location 𝑙 actually exists in the expression. In

our Isabelle/HOL formalisation, we make this explicit in the definition of wp and wp↑.

116 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

Position 𝑖 := 𝓁 | 𝓇

Variable(V) 𝑋 𝑌 𝑍 . . .

Location(L) 𝑙 := 𝜖 | 𝑙 ⊲ 𝑖 | 𝑖 ⊳ 𝑙

Tag(T) 𝑡 := · | ↑

Logic Domain 𝔇𝐿 = L→ P (E) → P (E)

Logic Environment(Γ𝐿) 𝜁 : (V×T) →𝔇𝐿

𝑤𝑝𝜁 :Γ𝐿⊩𝑠:S@𝑙 :L(𝑃 : P (E)) : (𝑅𝑤 : P (E)) (Weakest must succeed precondition)

𝑤𝑝
↑
𝜁 :Γ𝐿⊩𝑠:S@𝑙 :L

(𝑃 : P (E)) : (𝑅𝑤 : P (E)) (Weakest may error precondition)

Figure 4.9: Basic notations

Figure 4.10 shows the weakest preconditions for basic strategies: SKIP, ABORT

and atomic. Trivially, the weakest must succeed precondition and weakest may error

precondition for SKIP are the same, i.e., the given postcondition 𝑃 , since the execu-

tion of SKIP never results in error or divergence, nor changes the input expression.

As for ABORT, since it will always result in an error no matter what input expres-

sion is given, its weakest must succeed precondition is the empty set and its weakest

may error precondition is the set of all expressions. The weakest preconditions of

atomic strategies are defined using their denotational semantics (cf. figure 4.4): the

weakest must succeed precondition is the set of input expressions, for each expres-

sion of which applying the atomic strategy to its sub-expression at the given location

𝑙 should result in a (singleton) set of expressions which is a subset of the given post-

condition 𝑃 . The weakest may error postcondition is defined in a similar manner, the

𝑤𝑝𝜁⊩SKIP@𝑙 (𝑃) = 𝑃

𝑤𝑝
↑
𝜁⊩SKIP@𝑙

(𝑃) = 𝑃

𝑤𝑝𝜁⊩ABORT@𝑙 (𝑃) = ∅

𝑤𝑝
↑
𝜁⊩ABORT@𝑙

(𝑃) = E

𝑤𝑝𝜁⊩atomic@𝑙 (𝑃) = {𝑒 | (⟦atomic⟧∅(⋔𝑙 𝑒))�𝑙 𝑒 ⊆ 𝑃}

𝑤𝑝
↑
𝜁⊩atomic@𝑙

(𝑃) = {𝑒 | (⟦atomic⟧∅(⋔𝑙 𝑒))�𝑙 𝑒 ⊆ 𝑃 ∪ {𝑒𝑟𝑟 }}

Figure 4.10: Location-based weakest preconditions for basic strategies

4.4. Location-Based Weakest Precondition Calculus 117

only difference is that the resulting set of expressions should be a subset of 𝑃 ∪{err}.
It does not matter what semantic environment is given here when we invoke the se-

mantics, so we just use the environment which maps all variables to {div}, denoted

by ∅. Remember that the operators ⋔ and� are lookup and update.

Figure 4.11 shows the weakest preconditions for combinators: sequential compo-

sition, left choice and nondeterministic choice. Intuitively, the weakest must succeed

precondition of the sequential composition 𝑠 ; 𝑡 is simply to sequentially compose the

weakest must succeed preconditions of 𝑠 and 𝑡 where the post condition of 𝑠 is the

weakest must succeed precondition of 𝑡 . The same approach is taken for defining the

weakest may error precondition. The weakest must succeed precondition of the left

choice 𝑠 <+ 𝑡 is the union of the set of expressions that can be successfully rewritten

by the strategy 𝑠 and the set of expressions for which applying 𝑠 may result in error

but that can be successfully rewritten by the strategy 𝑡 . Its weakest may error condi-

tion additionally includes the set of expressions for which applying the strategy 𝑡 may

result in error. The definitions of the weakest preconditions of the nondeterministic

choice 𝑠 <+> 𝑡 capture the angelic nondeterminism for err and demonic nondeter-

minism for div. Its weakest must succeed precondition is the set of expressions to

which applying neither the strategy 𝑠 nor 𝑡 will diverge and which can be success-

𝑤𝑝𝜁⊩𝑠 ;𝑡@𝑙 (𝑃) =𝑤𝑝𝜁⊩𝑠@𝑙 (𝑤𝑝𝜁⊩𝑡@𝑙 (𝑃)) 𝑤𝑝
↑
𝜁⊩𝑠 ;𝑡@𝑙

(𝑃) =𝑤𝑝
↑
𝜁⊩𝑠@𝑙

(𝑤𝑝
↑
𝜁⊩𝑡@𝑙

(𝑃))

(Sequential composition)

𝑤𝑝𝜁⊩𝑠<+𝑡@𝑙 (𝑃) =𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) ∪ (𝑤𝑝
↑
𝜁⊩𝑠@𝑙

(𝑃) ∩𝑤𝑝𝜁⊩𝑡@𝑙 (𝑃))

𝑤𝑝
↑
𝜁⊩𝑠<+𝑡@𝑙

(𝑃) =𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) ∪ (𝑤𝑝
↑
𝜁⊩𝑠@𝑙

(𝑃) ∩𝑤𝑝
↑
𝜁⊩𝑡@𝑙

(𝑃))

(Left choice)

𝑤𝑝𝜁⊩𝑠<+>𝑡@𝑙 (𝑃) = (𝑤𝑝
↑
𝜁⊩𝑡@𝑙

(𝑃) ∩𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃)) ∪ (𝑤𝑝
↑
𝜁⊩𝑠@𝑙

(𝑃) ∩𝑤𝑝𝜁⊩𝑡@𝑙 (𝑃))

𝑤𝑝
↑
𝜁⊩𝑠<+>𝑡@𝑙

(𝑃) =𝑤𝑝
↑
𝜁⊩𝑠@𝑙

(𝑃) ∩𝑤𝑝
↑
𝜁⊩𝑡@𝑙

(𝑃)

(Nondeterministic choice)

Figure 4.11: Location-based weakest preconditions for combinators

118 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

fully rewritten by at least one of 𝑠 and 𝑡 . The weakest may error precondition relaxes

this last requirement by including the set of expressions to which applying both 𝑠 and

𝑡 may result in an error.

Location is very important for defining the weakest preconditions of traversals.

Demonstrated in figure 4.12, the approach of defining the weakest preconditions for

one(𝑠) is again similar to nondeterministic choice, as one(𝑠) nondeterministically

chooses one of the left or right child of the current expression to apply the strat-

egy 𝑠 to. Its weakest must succeed precondition is a set of expressions that are not

leaf nodes. For each of them, applying 𝑠 to either its left child or right child should

not diverge, and at least one of its children must be successfully rewritten by 𝑠 . The

𝑤𝑝𝜁⊩one(𝑠)@𝑙 (𝑃) = (𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑃) ∩𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓇 (𝑃)) ∪ (𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑃) ∩𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓁 (𝑃))

𝑤𝑝
↑
𝜁⊩one(𝑠)@𝑙

(𝑃) = {𝑒 | (⋔𝑙 𝑒) = Leaf } ∪ (𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑃) ∩𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑃))

(One)

𝑤𝑝𝜁⊩some(𝑠)@𝑙 (𝑃) =𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓁 (𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓇 (𝑃)) ∪𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓇 (𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓁 (𝑃))
∪ (𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓁 (𝑃) ∩𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓁 (𝑤𝑝

↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑃)))
∪ (𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓇 (𝑃) ∩𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓇 (𝑤𝑝

↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑃)))

𝑤𝑝
↑
𝜁⊩some(𝑠)@𝑙

(𝑃) = {𝑒 | (⋔𝑙 𝑒) = Leaf }
∪𝑤𝑝

↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑃)) ∩𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑃))
∩ (𝑤𝑝

↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑃) ∪𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓇 (𝑃)))
∩ (𝑤𝑝

↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑃) ∪𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓁 (𝑃)))

(Some)

𝑤𝑝𝜁⊩all(𝑠)@𝑙 (𝑃) = (𝑃 ∩ {𝑒 | (⋔𝑙 𝑒) = Leaf })
∪𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓁 (𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓇 (𝑃)) ∪𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓇 (𝑤𝑝𝜁⊩𝑠@𝑙⊲𝓁 (𝑃))

𝑤𝑝
↑
𝜁⊩all(𝑠)@𝑙

(𝑃) = (𝑃 ∩ {𝑒 | (⋔𝑙 𝑒) = Leaf })
∪ (𝑤𝑝

↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑃)) ∩𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓇

(𝑤𝑝
↑
𝜁⊩𝑠@𝑙⊲𝓁

(𝑃)))

(All)

Figure 4.12: Location-based weakest preconditions for traversals

4.4. Location-Based Weakest Precondition Calculus 119

weakest may error precondition of one(𝑠) includes all expressions that are leaf nodes

as well as expressions whose both children to which applying 𝑠 may result in error.

The weakest must succeed precondition of some(𝑠) is a set of expressions that are not

leaf nodes. For each of them, if the given strategy 𝑠 can be applied to both of its chil-

dren successfully, the result of applying 𝑠 to both of them regardless of the ordering

of the application should satisfy the postcondition 𝑃 . In addition, applying 𝑠 to one of

its children may result in an error, but not for both of its children. Again, expressions

with children to which applying 𝑠 diverges are excluded from the weakest must suc-

ceed precondition. Similar to one(𝑠), the weakest may error preconditions includes

all leaf expressions and expressions whose both children to which applying 𝑠 may

result in error. Since all(𝑠) requires the strategy 𝑠 to be applied to either a leaf ex-

pression or both children of an expression which is not a leaf, intuitively, its weakest

must succeed precondition is a set of leaf expressions, or expressions of which both

children can be successfully rewritten by the strategy 𝑠 regardless of the order of the

application of 𝑠 . Its weakest may error precondition again includes all leaf expres-

sions and expressions with children to which applying 𝑠 may result in an error. Note

that the weakest precondition formulae of all(𝑠) contain the sequential composition

of the execution of 𝑠 on the left child and then the right child as well as the execution

of 𝑠 on the right child and then the left child to indicate that all(𝑠) is executed without

regard for the order of the application of 𝑠 .

Lastly, we introduce the weakest preconditions for the fixed-point operator, shown

in figure 4.13, which are defined using simultaneous induction. Δ contains a pair

𝑤𝑝𝜁⊩𝑋@𝑙 (𝑃) = 𝜁 (𝑋, ·) 𝑙 𝑃 (where 𝜁 (𝑋, ·) def.)

𝑤𝑝
↑
𝜁⊩𝑋@𝑙

(𝑃) = 𝜁 (𝑋,↑) 𝑙 𝑃 (where 𝜁 (𝑋,↑) def.)

(Fixed-point variable)

𝑤𝑝𝜁⊩𝜇𝑋 .𝑠@𝑙 (𝑃) = [LFP𝒳 : Δ] 𝑙 𝑃 𝑤𝑝
↑
𝜁⊩𝜇𝑋 .𝑠@𝑙

(𝑃) = [LFP𝒴 : Δ] 𝑙 𝑃

Where : Δ =


𝒳 𝑙 𝑃 =𝑤𝑝𝜁 [(𝑋,·) ↦→𝒳 , (𝑋,↑)↦→𝒴]⊩𝑠@𝑙 (𝑃)

𝒴 𝑙 𝑃 =𝑤𝑝
↑
𝜁 [(𝑋,·) ↦→𝒳 , (𝑋,↑)↦→𝒴]⊩𝑠@𝑙

(𝑃)

(Fixed-point operator)

Figure 4.13: Location-based weakest preconditions for fixed-point operators

120 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

of simultaneously defined least fixed points 𝒳 and 𝒴 which are used to define the

weakest must succeed precondition and weakest may fail precondition respectively.

In these fixed-point equations, we extend the logic environment 𝜁 with mappings

from the fixed-point variable with tags (𝑋, ·) and (𝑋,↑) to the least fixed points 𝒳

and 𝒴 respectively.

The weakest must succeed precondition a (fixed point) variable 𝑋 is calculated by

applying the function obtained by looking up (𝑋, ·) in the logic environment 𝜁 to the

location 𝑙 and postcondition 𝑃 . For the weakest may fail precondition, the function

applied to 𝑙 and 𝑃 is obtained by looking up 𝑋 with the may fail tag ↑ from 𝜁 .

4.4.3 TheSoundness of theWeakest PreconditionCalculusw.r.t.

the Formal Semantics

Since our weakest precondition calculus is designed to reason about the execution

of strategies, it is essential to prove it is sound with respect to the formal semantics

introduced in section 4.3. Specifically, we define the soundness of the weakest must

succeed precondition as theorem 4.4.1, and the soundness of the weakest may error

precondition as theorem 4.4.2. Both of these theorems have the same assumption to

relate the logic and semantic environments 𝜁 and 𝜉 . This assumption states that given

any variable 𝑋 , location 𝑙 and postcondition 𝑃 , executing the function obtained by

looking up𝑋 in the logic environment 𝜁 — with the must succeed tag or the may error

tag correspondingly — gives the set of expressions, at the location 𝑙 of each of which

executing the semantics of the variable (𝜉 (𝑋)) results in a subset of the postcondition

𝑃 or 𝑃 ∪ {err} respectively. From this assumption, theorem 4.4.1 concludes that the

weakest must succeed precondition𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) should equal to the set of expressions

on which executing the semantics of 𝑠 gives a subset of 𝑃 . Similarly, theorem 4.4.2 says

that under the same assumptions, the weakest may error precondition 𝑤𝑝
↑
𝜁⊩𝑠@𝑙

(𝑃)
should equal to the set of expressions on which executing the semantics of 𝑠 gives a

subset of 𝑃 ∪ {err}.

Theorem 4.4.1 (Soundness theorem for Weakest Must Succeed Precondition).

∀𝑋 𝑙 𝑃 .𝜁 (𝑋, ·) 𝑙 𝑃 = {𝑒 | 𝜉 (𝑋) (⋔𝑙 𝑒)�𝑙 𝑒 ⊆ 𝑃}
∧𝜁 (𝑋,↑) 𝑙 𝑃 = {𝑒 | 𝜉 (𝑋) (⋔𝑙 𝑒)�𝑙 𝑒 ⊆ 𝑃 ∪ {𝑒𝑟𝑟 }}

𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) = {𝑒 | (⟦𝑠⟧𝜉 (⋔𝑙 𝑒))�𝑙 𝑒 ⊆ 𝑃}

4.5. Reasoning About Strategies with Weakest Precondition Calculus 121

Theorem 4.4.2 (Soundness theorem for Weakest May Error Precondition).

∀𝑋 𝑙 𝑃 .𝜁 (𝑋, ·) 𝑙 𝑃 = {𝑒 | 𝜉 (𝑋) (⋔𝑙 𝑒)�𝑙 𝑒 ⊆ 𝑃}
∧𝜁 (𝑋,↑) 𝑙 𝑃 = {𝑒 | 𝜉 (𝑋) (⋔𝑙 𝑒)�𝑙 𝑒 ⊆ 𝑃 ∪ {𝑒𝑟𝑟 }}

𝑤𝑝
↑
𝜁⊩𝑠@𝑙

(𝑃) = {𝑒 | (⟦𝑠⟧𝜉 (⋔𝑙 𝑒))�𝑙 𝑒 ⊆ 𝑃 ∪ {err}}

We prove these two theorems simultaneously, by induction on the strategy 𝑠 . For

the fixed-point operator cases, we make use of Scott induction. The proof is mecha-

nised in Isabelle/HOL.

4.5 Reasoning About Strategies with Weakest Pre-

condition Calculus

As discussed in section 4.2, there are some strategies that can never be executed suc-

cessfully, such as strategies that always diverge like repeat (SKIP) and strategies that

are not well composed like multcom ; addcom. We call such strategies bad strategies.

Formally, we define good and bad strategies in terms of our weakest precondition

calculus as definition 4.5.1 and definition 4.5.2, where the formal definition of bad

strategies is the negation of good strategies.

Definition 4.5.1 (Good strategies). A strategy 𝑠 is good iff for a given postcondition 𝑃 :

𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) ≠ ∅

Definition 4.5.2 (Bad strategies). A strategy 𝑠 is bad iff for a given postcondition 𝑃 :

𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) = ∅

For strategies that can terminate and are well composed, they may not be able to

successfully rewrite any input expression into an expression satisfying our desired

postcondition. For instance, even though the atomic strategy addcom is a good strat-

egy, applying it to 3 ∗ 4 would result in an error. Also, as illustrated in section 4.2,

when encoding a normalisation strategy for rewriting an input lambda expression

into its 𝛽𝜂-normal form, such strategy can diverge on some input expressions (e.g.,

the expression Ω given below). If it does terminate on an input expression, it ought

to rewrite all reducible sub-expressions of such input expression. We formally define

the successful executions and unsuccessful executions of good strategies as defini-

tion 4.5.3 and definition 4.5.4.

122 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

Definition 4.5.3 (Successful execution). An execution of a good strategy 𝑠 , on an input

expression 𝑒 is successful iff for a given postcondition 𝑃 :

𝑒 ∈𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) (where: 𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) ≠ ∅)

Definition 4.5.4 (Unsuccessful execution). An execution of a good strategy 𝑠 on an

input expression 𝑒 is unsuccessful iff for a given postcondition 𝑃 :

𝑒 ∉𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) (where: 𝑤𝑝𝜁⊩𝑠@𝑙 (𝑃) ≠ ∅)

Next, we demonstrate how to use the location-based weakest precondition calcu-

lus to reason about the execution of strategies. All examples we discuss are mecha-

nised in Isabelle/HOL.

4.5.1 Reasoning About Termination

Strategies can diverge. Recall from section 4.2 that repeat (𝑠) is defined as 𝜇𝑋 .𝑡𝑟𝑦 (𝑠;𝑋)
where try(𝑠) is defined as 𝑠 <+ SKIP. We can derive the weakest precondition formula

of repeat (𝑠) by the weakest precondition formulae of SKIP, left choice, sequential

composition and the fixed-point operator:

𝑤𝑝𝜁⊩repeat (𝑠)@𝑙 (𝑃) =𝑤𝑝
↑
𝜁⊩repeat (𝑠)@𝑙

(𝑃) = [LFP𝒳 : Δ] 𝑙 𝑃

where Δ is the fixed-point equation

𝒳 𝑙 𝑃 =𝑤𝑝𝜁 [(𝑋,·) ↦→𝒳 , (𝑋,↑)↦→𝒳]⊩𝑠@𝑙 (𝒳 𝑙 𝑃) ∪ (𝑃 ∩𝑤𝑝
↑
𝜁 [(𝑋,·) ↦→𝒳 , (𝑋,↑)↦→𝒳]⊩𝑠@𝑙

(𝒳 𝑙 𝑃))

Although the execution of repeat (𝑠) would never result in an error since its weakest

may error precondition formula is identical to its weakest must succeed precondition,

it may diverge.

A simple example of a diverging strategy we have introduced is the strategy

repeat (SKIP). It is straightforward to conclude that it is a bad strategy using the

weakest precondition calculus. With the weakest must succeed precondition formu-

lae of repeat (𝑠) and SKIP, we calculate that for the set of all expressions as the post

condition, the weakest must succeed precondition of repeat (SKIP) is an empty set:

𝑤𝑝𝜁⊩repeat (SKIP)@𝜖 (E) = ∅

Intuitively, such a result indicates that there is no expression that can be success-

fully rewritten by the strategy repeat (SKIP). According to the definition 4.5.2, we can

conclude that the diverging strategy repeat (SKIP) is bad strategy.

4.5. Reasoning About Strategies with Weakest Precondition Calculus 123

Since we apply demonic nondeterminism on divergence as discussed in section 4.4,

the strategy SKIP <+> repeat (SKIP) always diverges. To show that it is a bad strat-

egy, we can again calculate its weakest must succeed precondition with the set of all

expressions as the postcondition:

𝑤𝑝𝜁⊩SKIP<+>repeat (SKIP)@𝜖 (E) = ∅

Again, we obtain an empty set as its weakest must succeed precondition, indicating

that such a strategy can never be successfully executed on any input expression.

Strategies that can terminate are potentially good strategies. For instance, the

strategy SKIP <+ repeat (SKIP) always terminates. To conclude it being a good strat-

egy, we calculate its weakest must succeed precondition:

𝑤𝑝𝜁⊩SKIP<+repeat (SKIP)@𝜖 (E) = E

Intuitively, because left choice prioritises the strategy on the left hand side of the

combinator over the strategy on the right hand side, SKIP is always preferred over

repeat (SKIP) here. Therefore, SKIP <+ repeat (SKIP) always terminates and produces

expressions. According to the definition 4.5.1, we conclude that the terminating strat-

egy SKIP <+ repeat (SKIP) is a good strategy.

4.5.2 Reasoning About Well Composed Strategies

Strategies that terminate may still not be good strategies, since they can be not well

composed and always result in error. An example of a not well composed strategy

that we have introduced in section 4.2 is multcom ; addcom. According to the weakest

precondition formulae for atomic strategies and the sequential composition presented

in figure 4.10 and figure 4.11, we calculate its weakest must succeed precondition for

the set of all expressions as the postcondition:

𝑤𝑝𝜁⊩multcom ;addcom@𝜖 (E) = ∅

Since its weakest must succeed precondition is an empty set, with definition 4.5.2, we

can conclude that the strategy multcom ; addcom is a bad strategy.

Well composed terminating strategies are good strategies. For example, given an

atomic strategy addid defined as:

addid : 0+𝑎⇝ 𝑎

124 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

The strategy addcom ; addid is a well composed strategy. In practice, it can successfully

rewrite an expression 3+ 0 into the expression 3. We are able to conclude that the

strategy addcom ; addid is a good strategy again by checking its weakest must succeed

precondition for the set of all expressions as the postcondition:

𝑤𝑝𝜁⊩addcom ;addid@𝜖 (E) = {𝑒 |𝑒 = 𝑎 +0}

Since the calculated weakest must succeed precondition is not an empty set, according

to the definition 4.5.1, the strategy addcom ; addid is a good strategy.

4.5.3 Reasoning About Beta-Eta Normalisation

In section 4.2, we have defined the normalise strategy by composing the strategy

repeat (𝑠) and the top-down traversal topDown(𝑠) as normalise(𝑠) = repeat (topDown(𝑠)),
which keeps applying a given strategy 𝑠 to every possible sub-expression of an ex-

pression until 𝑠 is no longer applicable.

One example usage of the normalisation strategy we demonstrated is to reduce

an expression in 𝜆-calculus into the 𝛽𝜂-normal form. Given the 𝛽-reduction and 𝜂-

reduction as two atomic strategies beta and eta, we can express the strategy for cal-

culating the 𝛽𝜂-normal form as:

BENF = normalise(beta <+ eta)

Furthermore, we define a predicate to assert that an expression is in 𝛽𝜂-normal form,

simply by stating that the beta and eta atomic strategies must not be defined for any

location in the expression:

isBENF 𝑒 ⇔∀𝑙 . beta(⋔𝑙 𝑒)undef∧ eta(⋔𝑙 𝑒)undef (where: ⋔𝑙 𝑒 is defined)

It is well known that not every 𝜆-expression has such a normal form. With our

location-based weakest precondition calculus, we are able to reason about whether

an expression can be normalised by the strategy BENF into a 𝛽𝜂-normal form.

Lambda Expression 𝑒 := Id 𝜄 |
Abs

𝑒• |
App

𝑒𝑒

Index 𝜄 ∈ N

Figure 4.14: The syntax of the lambda calculus

4.5. Reasoning About Strategies with Weakest Precondition Calculus 125

Firstly, in figure 4.14, we provide an encoding of the lambda calculus with de

Bruijn indices using the expression tree structure we introduced, which takes the

form of either a Leaf or a node

n
𝑒𝑒

. Specifically, we encode an Id expression (a de

Bruijn index) as a Leaf and both an abstraction and an application as nodes. Then we

encode beta reduction and eta reduction as two atomic strategies:

beta :

App

𝑒Abs

𝑓•
⇝ 𝑓 [𝑒/0] eta :

Abs

App

Id 0𝑓

• ⇝ 𝑓 ⫰0

where 𝑓 [𝑒/0] is the de Bruijn substitution of the index 0 with the expression 𝑒 in 𝑓

and 𝑓 ⫰0 is the de Bruijn down shifting eliminating the index 0 in 𝑓 .

Next we introduce the weakest precondition formula for the strategy normalise(𝑠),
which is calculated using the weakest precondition formulae of repeat (𝑠) (introduced

in section 4.5.1) and topDown(𝑠). Recall that in section 4.2 the strategy topDown(𝑠)
is defined using the left choice combinator, the traversal one(𝑠) as well as the fixed-

point operator:

topDown(𝑠) = 𝜇𝑋 .(𝑠 <+ one(𝑋))

We can derive its weakest must succeed and may error precondition formulae:

𝑤𝑝𝜁⊩topDown(𝑠)@𝑙 (𝑃) = [LFP𝒳 : Δ] 𝑙 𝑃 𝑤𝑝
↑
𝜁⊩topDown(𝑠)@𝑙

(𝑃) = [LFP𝒴 : Δ] 𝑙 𝑃

Where:

Δ =



𝒳 𝑙 𝑃 =𝑤𝑝𝜁 [(𝑋,·) ↦→𝒳 , (𝑋,↑)↦→𝒴]⊩𝑠@𝑙 (𝑃) ∪ (𝑤𝑝
↑
𝜁 [(𝑋,·) ↦→𝒳 , (𝑋,↑)↦→𝒴]⊩𝑠@𝑙

(𝑃)

∩ ((𝒴(𝑙 ⊲𝓁)𝑃 ∩𝒳(𝑙 ⊲𝓇)𝑃) ∪ (𝒴(𝑙 ⊲𝓇)𝑃 ∩𝒳(𝑙 ⊲𝓁)𝑃)))

𝒴 𝑙 𝑃 =𝑤𝑝𝜁 [(𝑋,·) ↦→𝒳 , (𝑋,↑)↦→𝒴]⊩𝑠@𝑙 (𝑃) ∪ (𝑤𝑝
↑
𝜁 [(𝑋,·) ↦→𝒳 , (𝑋,↑)↦→𝒴]⊩𝑠@𝑙

(𝑃)

∩ (𝒴(𝑙 ⊲𝓁)𝑃 ∩𝒴(𝑙 ⊲𝓇)𝑃))

With the weakest precondition formulae for topDown(𝑠) defined, we can subsequently

provide the weakest precondition formula for the strategy normalise(𝑠). Note that its

weakest must succeed precondition and weakest may error precondition share the

same formula, just like repeat (𝑠):

𝑤𝑝𝜁⊩normalise(𝑠)@𝑙 (𝑃) =𝑤𝑝
↑
𝜁⊩normalise(𝑠)@𝑙

𝜁 (𝑃) = [LFP𝒳𝑟 : Δ𝑟] 𝑙 𝑃

Where:

Δ𝑟 =𝒳𝑟 𝑙 𝑃 = [LFP𝒳𝑡 : Δ𝑡] 𝑙 𝑃 ∪ (([LFP𝒴𝑡 : Δ𝑡] 𝑙 𝑃) ∩𝑃)

126 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

Δ𝑡 =



𝒳𝑡 𝑙 𝑃 =𝑤𝑝𝜁 [(𝑋,·) ↦→𝒳𝑟 , (𝑋,↑)↦→𝒳𝑟 , (𝑌,·) ↦→𝒳𝑡 , (𝑌,↑)↦→𝒴𝑡]⊩𝑠@𝑙 (𝒳𝑟 𝑙 𝑃)

∪ (𝑤𝑝
↑
𝜁 [(𝑋,·) ↦→𝒳𝑟 , (𝑋,↑)↦→𝒳𝑟 , (𝑌,·) ↦→𝒳𝑡 , (𝑌,↑)↦→𝒴𝑡]⊩𝑠@𝑙

(𝒳𝑟 𝑙 𝑃)

∩ ((𝒴𝑡 (𝑙 ⊲𝓁)𝑃 ∩𝒳𝑡 (𝑙 ⊲𝓇)𝑃) ∪ (𝒴𝑡 (𝑙 ⊲𝓇)𝑃 ∩𝒳𝑡 (𝑙 ⊲𝓁)𝑃)))

𝒴𝑡 𝑙 𝑃 =𝑤𝑝𝜁 [(𝑋,·) ↦→𝒳𝑟 , (𝑋,↑)↦→𝒳𝑟 , (𝑌,·) ↦→𝒳𝑡 , (𝑌,↑)↦→𝒴𝑡]⊩𝑠@𝑙 (𝒳𝑟 𝑙 𝑃)

∪ (𝑤𝑝
↑
𝜁 [(𝑋,·) ↦→𝒳𝑟 , (𝑋,↑)↦→𝒳𝑟 , (𝑌,·) ↦→𝒳𝑡 , (𝑌,↑)↦→𝒴𝑡]⊩𝑠@𝑙

(𝒳𝑟 𝑙 𝑃)

∩ (𝒴𝑡 (𝑙 ⊲𝓁)𝑃 ∩𝒴𝑡 (𝑙 ⊲𝓇)𝑃))

With the weakest precondition formula for normalise(𝑠), we can first conclude that

the strategy BENF for calculating the 𝛽𝜂-normal form for expressions is a good strat-

egy by showing that 𝑤𝑝𝜁⊩BENF@𝑙 (E) ≠ ∅.

Although the strategy BENF is good, some expressions are not able to be rewritten

by it to a 𝛽𝜂-normal form. For instance, the expression Ω is defined as:

Ω :=

App

Abs

App

𝐼𝑑 0𝐼𝑑 0

•

Abs

App

𝐼𝑑 0𝐼𝑑 0

•

Applying the strategy BENF to the expression Ω will diverge, namely, the execution

of the strategy BENF on Ω is unsuccessful. We draw this conclusion by showing that

Ω is not an expression in the weakest must succeed precondition of BENF no matter

what the postcondition is:

Ω ∉𝑤𝑝𝜁⊩BENF@𝜖 (E)

We prove this proposition straightforwardly using Scott induction. Note that I cer-

tainly do not claim that I have solved the halting problem here, i.e., the location-based

weakest precondition calculus is not in general computable, rather, it gives a charac-

terisation of non-terminating executions.

Beside characterising expressions that fail to be normalised into a 𝛽𝜂-normal form

using BENF , we are also interested in examining whether a complex expression is in-

deed rewritten into a 𝛽𝜂-normal form after applying the strategy BENF . For instance,

4.5. Reasoning About Strategies with Weakest Precondition Calculus 127

given an expression 𝑒 defined as:

𝑒 :=

App

Abs

Abs

App

𝐼𝑑 0𝐼𝑑 1

•

•

Abs

Abs

Abs

App

App

𝐼𝑑 0App

𝐼𝑑 1𝐼𝑑 2

𝐼𝑑 1

•

•

•

we show that applying the strategy BENF to the expression 𝑒 does rewrite it to a

𝛽𝜂-normal form by showing the proposition below holds:

𝑒 ∈𝑤𝑝𝜁⊩BENF@𝜖 ({𝑒 | isBENF 𝑒})

The proof of this proposition is also straightforward, merely requiring the repeated

unfolding of fixed-point operators. On the basis of this result, we can conclude that

the strategy BENF performs the rewrite on the input expression 𝑒 as we expected,

namely, rewriting 𝑒 into its 𝛽𝜂-normal form.

4.5.4 Discussion

As this section demonstrates, our formal calculus provides precise description of

strategies, independent of their length and complexity. It also provides a good char-

acterisation of desired properties to be satisfied after the execution of a strategy, as

well as of expressions that can be successfully rewritten. Additionally, our calculus

is capable of performing non-trivial reasoning about rewrite strategies. Specifically,

the reasoning about beta-eta normalisation already features strategy combinators,

traversals and recursion: the fundamental ingredients of strategic rewriting. As our

framework is fully mechanised in Isabelle/HOL, reasoning can be performed directly

in and facilitated by the proof assistant. Therefore, it is conceivable — still with a

significant effort — to use our framework for reasoning about complex applications,

128 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

including Elevate (Hagedorn et al., 2020) compiler optimisations. A significant ini-

tial hurdle is to encode the language that is rewritten (e.g. the lambda calculus in

section 4.5.3) as well as application-specific rewrites in Isabelle/HOL, before we can

start reasoning about the behaviour of more complex rewrite strategies. With our for-

mal calculus and its Isabelle/HOL implementation it would be possible to build up a

library of standard languages and rewrites, to facilitate reasoning about increasingly

complex practical applications.

4.6 Related Work

Strategic Rewriting and Traversals Term rewriting systems (Dershowitz, 1985)

are a powerful and versatile method to express syntactic transformations. Strate-

gic rewriting languages, which give programmers control over the rewriting process,

have seen applications in many areas. Initial efforts, such as the language ELAN

(Borovanský et al., 1996), focused on using rewriting as a way to model deduction

and computation. The previously mentioned Stratego (Visser et al., 1998; Visser, 2001;

Bravenboer et al., 2008), which uses System S as its core language, is designed for

developing language interpreters in the Spoofax Language Workbench (Wachsmuth

et al., 2014). Elevate (Hagedorn et al., 2023, 2020) is very much in the style of Strat-

ego, but is instead targeted towards guiding optimisations in a compiler for high

performance computing. The language TL (Winter and Subramaniam, 2004) applies

strategic rewriting to data processing tasks, and Strafunski (Lämmel and Visser, 2002),

which is again a Stratego-like language, uses strategies for datatype-generic program-

ming. Traversals are an essential feature of System S that also appear in other pro-

gram transformation designs, such as the ‘Scrap your boilerplate’ (SYB) style traver-

sals (e.g. everywhere, everything, anyDescendant, anyAncestor etc.) for XML

programming (Lämmel, 2007). Reachability constraints are added to types of these

traversals for detecting queries that result in an empty set and transformations that

always fail or do not change anything. To analyse strategic programs some alge-

braic laws are discussed by Cunha and Visser (2007) for equational reasoning and by

Lämmel et al. (2013) as hints of potential dead code. One could potentially make use

of our weakest precondition calculus to prove and generalise these laws.

Weakest Preconditions Weakest preconditions were introduced by Dijkstra (Di-

jkstra, 1975). Bonsangue and Kok (1992) extend Dijkstra’s calculus to include recur-

4.6. Related Work 129

sion in the same way that we do. Weakest preconditions are key to Cook’s proof (Cook,

1978) of the relative completeness of Floyd-Hoare Logic (Floyd, 1967; Hoare, 1969b),

and are similarly used by Goncharov and Schröder (2013) to show relative complete-

ness of their Hoare Logic for programs with monadic effects. Morgan (1994) uses

weakest preconditions as the semantic foundation for his refinement calculus, en-

abling stepwise derivation of programs from their specifications. In recent work,

Aguirre et al. (2022) explore the categorical structure of compositional weakest pre-

conditions, characterising them as those that are obtained from the Cartesian lifting

of some monad. As a related application of weakest preconditions, Swierstra and Baa-

nen (2019) provide a weakest prediction semantics for effectful programs, accounting

for exceptions, state, non-determinism and general recursion. Their work could pos-

sibly be an alternative approach to achieve some of the goals of our work, although

the application of such a formalism to the form of rewriting in formalisms like system

S is not immediate. For example, it is unclear whether System S with its handling of

errors and non-termination would actually form a monad. Errors alone can, of course,

be handled by the Error monad; the interaction with divergence and errors is more

sophisticated. As a consequence, this may give rise to complications of a similar order

of magnitude as the ones addressed in this chapter.

Existing Formalisation and Verification We are not the first to examine strate-

gic rewriting languages formally. Both the initial paper on Stratego (Visser et al.,

1998) and the paper on System S (Visser and Benaissa, 1998) present big-step opera-

tional semantics. However these semantics do not model divergence, and are not the

basis for any formal claims. In this work, by contrast, we model all possible outcomes

including divergence denotationally, and we show the denotational model equiva-

lent to an extended big-step operational semantics of System S that includes diver-

gence, by establishing the computational soundness and adequacy with respect to

the extended big-step operational semantics. Kaiser and Lämmel (2009) formalise a

subset of System S without divergence in Isabelle/HOL by shallow embedding, but

this formalisation does not include the general fixed-point operator of System S, and

the choice to use shallow embedding, while convenient for some tasks, precludes the

formalisation of general, meta-theoretic properties about all strategies. In our formal-

isation, we opt for a deep embedding, enabling us to mechanise all of the definitions

and proofs in this chapter. Focusing on traversals in strategic languages, Lämmel

et al. (2013) characterise a list of strategic programming errors and discuss ways to

130 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

avoid these errors with static typing and static analysis. With a different approach,

we provide a general and formal characterisation of “good” and “bad” strategies as

well as successful and unsuccessful executions of strategies, using our location-based

weakest precondition calculus.

Kieburtz (2001), an inspiration for this work, informally sketches some weakest

precondition rules for Stratego. Rather than a location-based weakest precondition

calculus such as ours, Kieburtz (2001) includes assertions in modal logic (specifically

a combination of CTL and the modal 𝜇-calculus), where the various tree modalities

allow movement to different sub-expressions. However, this modal logic variant does

not have the expressive power of our framework because of our choice of location lan-

guage. For instance, CTL is not expressive enough to reason about the one operator.

When it comes to traversals, Kieburtz (2001) does not define general predicate trans-

formers for modal assertions, and thus Kieburtz’s (2001) rules do not form a complete

calculus. It is not clear how Kieburtz’s (2001) approach could be extended to handle

traversals in their full generality. In our work, our assertions are just sets of expres-

sions, and we move around an expression by associating locations to our weakest

preconditions. This enables us to define general rules for traversals, allowing a com-

positional and complete calculus for all strategies and all postconditions. In addition,

the fixed-point operator is not well constructed in Kieburtz’s (2001) work and it is

not proven to be monotone, whereas we have a correct treatment of the fixed-point

operator and have proven monotonicity of all our formulae. Also, in Kieburtz’s (2001)

work, soundness is not proven, whereas we prove the soundness of our weakest pre-

condition calculus w.r.t. the formal semantics. Lastly, we provide a careful treatment

of divergence with mutually defined wp and wp↑, while such a feature is not reflected

in Kieburtz’s (2001) work.

Type Systems for Strategic Rewriting Languages A related but parallel strand

of work is in giving types to strategic rewriting languages. Smits and Visser (2020)

add gradual typing to Stratego and use it to find bugs in their strategies for language

interpreters. Koppel (2023) uses typed strategies to model multi-language program

transformations, Lämmel (2003) adds types to strategies with applications to generic

programming in typed languages and Fu et al. (2023) makes use of structural typing

with traces for checking ill-composed strategies statically. These type systems em-

phasise lightweight static or the hybrid of dynamic and static checking to find bugs,

whereas our focus is on a complete semantic accounting of rewriting strategies, and

4.7. Conclusion and Future Work 131

the development of a weakest precondition calculus that can demonstrate the absence

of bugs, not merely their presence.

Kleene Algebra Strategic rewriting languages resemble a Kleene Algebra (Kozen,

1991) extended with traversals and a biased choice operator. There have been many

other extensions to Kleene Algebra, most notably Concurrent Kleene Algebra (Hoare

et al., 2011), which adds parallel composition, and Kleene Algebra with Tests (Kozen,

1997), which adds Boolean guards to model the semantics of while programs. Kozen

(1999) shows that reasoning by Kleene Algebra with Tests entirely subsumes Hoare

Logic for while programs. A version of Kleene Algebra with Tests, NetKAT, has been

used to reason about packet switching networks (Anderson et al., 2014). Recently,

Concurrent Kleene Algebra and NetKAT have been combined for reasoning about

concurrent network systems (Wagemaker et al., 2022).

Denotational semantics and adequacy The appeal of the Scott-Strachey ap-

proach to semantics (Stoy, 1985) is in its local and compositional reasoning, and over

the last 50 years it has been used for many diverse programming languages. As far

as programming language abstractions go, the strategic rewriting language we con-

sider is mostly standard, and we were able to use the following relevant semantic tools

with relatively minor modification. Plotkin pioneered the powerdomain construction

(1976) and later characterised it as the free semilattice over a domain (Hennessy and

Plotkin, 1979). Most denotational accounts include an adequacy proof, and it is pos-

sible to prove them wholesale for standard programming languages with a myriad of

expressive features (Simpson, 2004; Plotkin and Power, 2001; Johann et al., 2010). We

found the decomposition of computational adequacy into dual inductive and coin-

ductive arguments interesting, and we hope it could inform other reflective accounts

of adequacy (Devesas Campos and Levy, 2018).

4.7 Conclusion and Future Work

We have presented Shoggoth, a rigorous formal foundation for strategic rewriting

languages, including a comprehensive semantic accounting of System S, and a weak-

est precondition calculus to facilitate formal reasoning about rewriting strategies.

Our semantic treatment models all possible executions of strategies including diver-

gences in both denotational and big-step operational models, and our proofs of sound-

132 Chapter 4. Capturing A Shape-Shifter: The Semantic Process

ness and adequacy demonstrate the equivalence of these models. Our location-based

weakest precondition calculus is the first formal axiomatic treatment of rewriting

strategies, and enables reasoning about traversals by having the notion of location

for indicating where in an expression a given strategy operates. Our soundness proof

justifies our location-based weakest precondition calculus with respect to our seman-

tic models, and we demonstrate practical application of this calculus by applying it

to realistic examples. All of our work has been mechanised in over 5,000 lines of

Isabelle/HOL proof script.

Weakest precondition calculi form the basis of verification condition generators

(VCGs), which are a key component of many automatic and semi-automatic verifica-

tion tools such as VCC (Cohen et al., 2009) and Dafny (Leino, 2010), as well as of static

analysers such as the popular Extended Static Checking extension for Java (Flanagan

et al., 2002; Leino, 2005). We envision that our weakest precondition calculus could

similarly inform the design of a VCG for automatic verification or static checking of

rewriting strategies. We intend to use Shoggoth as a foundation for the development

of tools for verification and, potentially, synthesis of rewriting strategies.

Epilogue

In this study, we have analysed and designed a reasoning framework for syntactic

transformations and their compositions via processing their formal semantics. In the

end of this chapter, I would like to enclose this chapter again with some high-level

observations and a reflection.

In a strategic rewriting system, the syntax for manipulating expressions and se-

mantics of the evaluation of expressions are interdependent. Since the syntactic trans-

formations of expressions encode the process of evaluating the semantics of these ex-

pressions and by composing these syntactic transformation steps, we have the syntax

of a strategic rewriting language, providing a concise interface to not only compose

but also control the application of these strategies. Again, by analysing the semantics

of such syntax for composing strategies, we are able to understand and reason about

the execution of these compositions of syntactic transformations. One may find such

a process of detailed analysis of some concise language constructions for syntactic

transformations at odds with the intuition of reasoning about programs — normally

people utilise some notions like type systems and logic formulae which are more ab-

stract than the encoding of these programs. However, I find it is hard to design some

constructs which are even more abstract than the existing syntax of these composi-

4.7. Conclusion and Future Work 133

tions for reasoning about there executions, rather, the behaviours hidden beneath the

syntactic constructs of these compositions are surprisingly complicated and can only

be properly assessed by modelling their executions.

In modelling the semantics of System S, there is again a trade-off between concise

abstractions and precise expressiveness. To be able to see the composition of strate-

gies clearly, we simplified our understanding of atomic strategies, abstracting their

complex implementation details by modelling them as partial functions. With such

an abstraction, some computation details of these atomic strategies are not consid-

ered like the side effects of the execution of an atomic strategy. However, by doing so

we are able to concentrate on what possible results they can produce contributing to

the analysis of the compositions rather than how they get evaluated to produce these

results, allowing us to separate the process of semantic analysis of the composition

of strategies from the detailed constructions of the expressions to be rewritten, thus

making the semantics and reasoning framework we have built more general.

Chapter 5

TheThorn andTheBird: StillWeDo It

Conclusion

The bird with the thorn in its breast, it follows an immutable law; it is

driven by it knows not what to impale itself, and die singing. At the

very instant the thorn enters there is no awareness in it of the dying

to come; it simply sings and sings until there is not the life left to utter

another note. But we, when we put the thorns in our breasts, we know.

We understand. And still we do it. Still we do it.

— Colleen McCullough “The Thorn Birds”

T
hroughout this thesis, three conceptual questions have been addressed

via three studies presented in chapter 2, chapter 3, and chapter 4, ulti-

mately, they all relate to the fundamental motivation of my researches

concerning the meaning of computer programs — to design better abstraction for

modelling and understanding programs as well as better formal frameworks for rea-

soning about programs.

The study discussed in chapter 2 is conducted to address the first conceptual ques-

tion: How to design a better abstraction mechanism that allows programmers to ef-

fectively express what they want a computer to do via some declarative yet accurate

specifications instead of how a computer should accomplish a task via some concrete

implementations? The study specifically focuses on designing property-based con-

tainer types in programming languages. In particular, we investigate ways to declar-

135

136 Chapter 5. The Thorn and The Bird: Still We Do It

atively specify the properties of container types using formal specifications instead

of having these properties concretely implemented for container types, allowing con-

crete implementations to be inferred from the specifications. In this study, we utilise

existing verification techniques including formal specifications, data refinement, and

refinement types for the purpose of designing declarative yet accurate abstractions.

We demonstrate that these specifications describing what properties, especially prop-

erties giving an account of functional requirements that a container type and its oper-

ations should satisfy, which are separated from concrete container implementations

describing how properties are satisfied. In terms of addressing the conceptual ques-

tion regarding to the understanding of the relationship between specifications and

implementations, the design of property based container types in this study indicates

that declarative specifications enable better automation and optimisation for applica-

tion programmers when selecting desired container implementations in programs.

The study discussed in chapter 3 is conducted to address the second conceptual

question: How to intuitively understand distributed programs using the same concep-

tual model as monolithic programs? The study focuses on designing, implementing,

and formalising a UMI framework as a Rust library. This UMI framework allows a dis-

tributed program to be migrated a monolithic program without massive changes to

the syntax or structure of the original monolithic program. In addition, the semantics

of the monolithic program is preserved. By formalising the core calculus of the UMI

framework implemented as a distributed extension of Rust, we argue that our UMI

framework extends Rust’s memory safety guarantees into a distributed setting by

utilising Rust’s ownership and lifetime system in distributed memory management.

In terms of addressing the conceptual question regarding to understanding the con-

nection between monolithic programs and distributed programs, the UMI framework

demonstrates that a monolithic program can be viewed as an abstraction of a dis-

tributed program. Rather than requiring programmers to implement how some func-

tionalities are achieved in a distributed setting via network communication protocols

and message passing, programmers only need to specify what these functionalities a

distributed program is required to achieve in terms of a monolithic program by ab-

stracting away the details of distributed memory management and message passing

over a network.

The study discussed in chapter 4 is conducted to address the third conceptual

question: How do we characterise the relationship between the syntax and semantics

of programming languages? The study focuses on a thorough examination of the se-

137

mantics of a core calculus — System S — of a family of strategic rewriting languages

that instructs syntactic transformations. More specifically, we formalise a denota-

tional semantics and big-step operational semantics of System S, featuring errors,

divergence, and non-determinism. In addition, we prove the equivalence of these

two semantic models, showing that they are equally expressive, and model the same

meaning of System S. We then present an axiomatic model of System S, which is a

weakest precondition calculus, allowing us to reason about the executions of rewrites

encoded in System S. Regarding to the conceptual question, this study demonstrate a

perhaps interesting observation: As for strategic rewriting languages, the syntax and

semantics are interdependent. The syntactic transformations of expressions encode

the meaning for the evaluation of these expressions, and by designing and analysing

three different formal models of semantics, we are able to characterise and reason

about the executions of compositions of these syntactic transformations.

There is one important observation shared by all three studies: There is always a

tension between the expressiveness and the elegance of abstraction when modelling

programming languages. In the first study, we have observed that it is challenging

to express performance related non-functional properties for containers using the

declarative formal specification we have designed. In the second project, we have

presented our UMI framework which provides a conceptual modelling which views a

monolithic program as a functional specification of a distributed program, abstracting

over the complicated network communication details while extending the memory

safety guarantees provided by the monolithic program into a distributed program.

However, such an abstraction is not expressive enough to capture the failures caused

by the network communication problems and server errors. In the third project,

in order to formalise concise and elegant semantics of the composition of syntactic

transformations, we abstract away the implementation details of the atomic strategies

and model them as partial functions. However, such an abstraction is not expressive

enough to model concepts such as side effects of the execution of atomic strategies.

To summarise such an observation, if the model is too detailed and precise, it may

become overly specific and complicated, lose the generality, and obscure the high-

level structure of the language features that it models. However, if the model if too

abstract, it may lose some important aspects of the language features that it models.

When we are designing a formal model to demonstrate some principled understand-

ing of some features we care about in a programming language, we should always

consider the balance between expressiveness and abstraction.

138 Chapter 5. The Thorn and The Bird: Still We Do It

Table 5.1: A summary of different semantic techniques used in different chapters

Operational semantics Denotational semantics Axiomatic semantics

Chapter 3, Chapter 4 Chapter 4 Chapter 2, Chapter 4

Back to the theme of this thesis — studies concerning the meaning of computer

programs, we have conducted three studies relating to explore better techniques for

modelling important features and components of programming languages, includ-

ing container types, distributed programming, and term rewriting. We have utilised

all three formal semantic techniques in these studies for enabling programmers to

gain formal understanding of computer programs, to effectively communicate de-

sired functionalities to computers without being overly specific, and to reason about

the executions of computer programs.

As summarised in table 5.1, in chapter 2, specifications we design take the form of

axiomatic semantics specifying properties should be maintained by all operations of a

container as well as the desired outcome of the execution of each operation defined for

a container. By choosing the axiomatic model, although we are not able to express the

runtime behaviours (non-functional properties) of the container operations, as this

semantic model assigns meanings to programs by specifying properties satisfied by

the results produced by executions of computations, we are able to effectively express

the properties concerning the functional aspects of container implementation, which

is the goal of this study.

In chapter 3, we use small-step operational semantics for formalising the mean-

ing of monolithic and distributed Rust programs. Such an operational model is good

for capturing implementation details. However, it is not good for abstraction, hence

we need to have two sets of reduction relations for the semantics of monolithic pro-

grams and the semantics of distributed programs, and a relation between them about

their extension stated as the location transparency theorem. A denotational model

could easily establish such a relation by construction as it is able to be instantiated for

different runtime structures, however, such a semantic model does not exist for the

surface language of Rust. Although using the operational model is a valid approach

for this study, perhaps this study still motivates the need of developing a denotational

model for the surface language of Rust in the future.

In chapter 4, we give three semantic models to System S. The denotational model

abstracts away the details of executing programs, gives the meaning to programs

using mathematical objects. The operational model, taking the form of the big-step

139

operation semantics, gives the meaning to programs by describing behaviours of the

execution of programs. Comparing to the denotational model, it is less abstract or

general, but it is closer to the concrete semantics implemented for a language. We

can relate these two models by establishing the semantic equivalence between them.

Lastly, we build an axiomatic model taking the form of the location-based weakest

precondition calculus, which helps us to reason about the execution of programs.

Since the denotational model gives a good notion of abstraction, it facilitates us to

establish the soundness (also completeness) of the axiomatic model, without the need

of analysing the behavioural details of the execution.

These three formal semantic models for program languages can be viewed as two

different approaches of assigning and analysing the meaning of programming lan-

guages — extensionalism and intensionalism (van Eijck and Unger, 2010). The de-

notational and axiomatic models can be viewed as a form of extensional semantics

of programming languages, resonating Russell’s theory of description that forms the

theory of meaning by denoting sentences with their truth-values. These models ab-

stract away the intensional aspects of the execution of programs such as runtime

behaviours, rather than obtaining the meaning of a programming language by how

programs are executed, they use a single object to assign the meaning to a program-

ming language. On the contrary, the operational model can be seen as an intentional

semantics of programming languages, resonating with the ideas presented in Saus-

sure’s semiotic analysis, Montague semantics and even cognitive semantics, focusing

on analysing the meaning by properties as connotations of words and the process

of comprehension. With the operational model, the meaning of a programming lan-

guage is given by how programs are executed, it represents intensional and implemen-

tation details of a programming language.

Everything beautiful will eventually come to an end. Although I have been ask-

ing different questions, wondering around different paths, and searching for different

angles to gain some understandings of the questions I have been asking, like the bird

with the impaling thorn, everything I have been exploring eventually leads to the

same direction: I am in the process of searching for the meaning of the world, espe-

cially the world of which I am the centre — and in the end the result might just be: It

is meaningless. Nevertheless, I know, I understand, even if there is nothing there, still

I search for it, till the end of my life, still I search for it.

Bibliography

Abdullahi, S. E. and Ringwood, G. A. (1998). Garbage collecting the internet: a survey

of distributed garbage collection. ACM Comput. Surv., 30(3):330–373.

Adjukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica, 1:1–27.

English translation “Syntactic Connexion” by H. Weber in McCall, S. (Ed.) Polish

Logic, pp. 207–231, Oxford University Press, Oxford, 1967.

Aguirre, A., Katsumata, S., and Kura, S. (2022). Weakest preconditions in fibrations.

Math. Struct. Comput. Sci., 32(4):472–510.

AltSysRq (2022). Proptest: A rust property testing framework. Accessed Sep. 2022.

https://github.com/altsysrq/proptest.

Anderson, C. J., Foster, N., Guha, A., Jeannin, J., Kozen, D., Schlesinger, C., and Walker,

D. (2014). NetKAT: semantic foundations for networks. In Jagannathan, S. and

Sewell, P., editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014,

pages 113–126. ACM.

Ankerl, M. (2019). Hashmaps benchmarks – finding the fastest; memory effi-

cient hashmap. Accessed Sep. 2022. https://martin.ankerl.com/2019/04/01/

hashmap-benchmarks-01-overview/.

Arvidsson, E., Castegren, E., Clebsch, S., Drossopoulou, S., Noble, J., Parkinson, M. J.,

and Wrigstad, T. (2023). Reference capabilities for flexible memory management.

Proc. ACM Program. Lang., 7(OOPSLA2).

Bayer, R. (1972). Symmetric binary b-trees: Data structure and maintenance algo-

rithms. Acta Informatica, 1:290–306.

Bierman, G. M., Gordon, A. D., Hriţcu, C., and Langworthy, D. (2010). Semantic sub-

typing with an smt solver. In Proceedings of the 15th ACM SIGPLAN International

141

142 Bibliography

Conference on Functional Programming, ICFP ’10, page 105–116, New York, NY,

USA. Association for Computing Machinery.

Bonsangue, M. M. and Kok, J. N. (1992). Semantics, orderings and recursion in the

weakest precondition calculus. In de Bakker, J. W., de Roever, W. P., and Rozen-

berg, G., editors, Sematics: Foundations and Applications, REX Workshop, Beekber-

gen, The Netherlands, June 1-4, 1992, Proceedings, volume 666 of LNCS, pages 91–

109. Springer.

Boole, G. (1854). An investigation of the laws of thought: on which are founded the

mathematical theories of logic and probabilities, volume 2. Walton and Maberly.

Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P., and Vittek, M. (1996). ELAN:

A logical framework based on computational systems. In Meseguer, J., editor, First

International Workshop on Rewriting Logic and its Applications, RWLW 1996, Asilo-

mar Conference Center, Pacific Grove, CA, USA, September 3-6, 1996, volume 4 of

Electronic Notes in Theoretical Computer Science, pages 35–50. Elsevier.

Brandom, R. (2000). Articulating Reasons: An Introduction to Inferentialism. Harvard

University Press, Cambridge, Mass.

Bravenboer, M., Kalleberg, K. T., Vermaas, R., and Visser, E. (2008). Stratego/XT 0.17.

A language and toolset for program transformation. Sci. Comput. Program., 72(1-

2):52–70.

Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M. F. P., and Temam, O. (2007).

Rapidly selecting good compiler optimizations using performance counters. In

Proceedings of the International Symposium on Code Generation and Optimization,

CGO ’07, page 185–197, USA. IEEE Computer Society.

Cechner, P. (2014). vector vs map performance confusion. Accessed

Sep. 2022. https://stackoverflow.com/questions/24542936/

vector-vs-map-performance-confusion.

Chapman, S. and Routledge, C. (2009). Ideational Theories, pages 84–85. Edinburgh

University Press, Edinburgh.

Chen, Z., O’Connor, L., Keller, G., Klein, G., and Heiser, G. (2017). The cogent case for

property-based testing. In Proceedings of the 9th Workshop on Programming Lan-

Bibliography 143

guages and Operating Systems, PLOS’17, page 1–7, New York, NY, USA. Association

for Computing Machinery.

Chen, Z., Rizkallah, C., O’Connor, L., Susarla, P., Klein, G., Heiser, G., and Keller,

G. (2022). Property-based testing: Climbing the stairway to verification. In Pro-

ceedings of the 15th ACM SIGPLAN International Conference on Software Language

Engineering, SLE 2022, New York, NY, USA. ACM.

Choi, K., Cheney, J., Fowler, S., and Lindley, S. (2020). A polymorphic rpc calculus.

Science of Computer Programming, 197:102499.

Chomsky, N. (1957). Syntactic Structures. De Gruyter Mouton, Berlin, Boston.

Chomsky, N. (1975). The Logical Structure of Linguistic Theory. Springer.

Chomsky, N. (2000). New Horizons in the Study of Language and Mind. Cambridge

University Press.

Claessen, K. and Hughes, J. (2000). Quickcheck: A lightweight tool for random testing

of haskell programs. In Proceedings of the Fifth ACM SIGPLAN International Con-

ference on Functional Programming, ICFP ’00, page 268–279, New York, NY, USA.

Association for Computing Machinery.

Clebsch, S., Franco, J., Drossopoulou, S., Yang, A. M., Wrigstad, T., and Vitek, J. (2017).

Orca: Gc and type system co-design for actor languages. Proc. ACM Program. Lang.,

1(OOPSLA).

Cohen, E., Dahlweid, M., Hillebrand, M. A., Leinenbach, D., Moskal, M., Santen, T.,

Schulte, W., and Tobies, S. (2009). VCC: A practical system for verifying concur-

rent C. In Berghofer, S., Nipkow, T., Urban, C., and Wenzel, M., editors, Theorem

Proving in Higher Order Logics, 22nd International Conference, TPHOLs 2009, Mu-

nich, Germany, August 17-20, 2009. Proceedings, volume 5674 of LNCS, pages 23–42.

Springer.

Cook, S. A. (1978). Soundness and completeness of an axiom system for program

verification. SIAM J. Comput., 7(1):70–90.

Cooper, E. E. and Wadler, P. (2009). The rpc calculus. In Proceedings of the 11th ACM

SIGPLAN conference on Principles and practice of declarative programming, pages

231–242.

144 Bibliography

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to

Algorithms, 3rd Edition. MIT Press.

Costa, D. and Andrzejak, A. (2018). Collectionswitch: A framework for efficient and

dynamic collection selection. In Proceedings of the 2018 International Symposium

on Code Generation and Optimization, CGO 2018, page 16–26, New York, NY, USA.

Association for Computing Machinery.

Croft, W. and Cruse, D. A. (2004). Cognitive Linguistics. Cambridge Textbooks in

Linguistics. Cambridge University Press.

Cunha, A. and Visser, J. (2007). Transformation of structure-shy programs: Applied

to xpath queries and strategic functions. In Proceedings of the 2007 ACM SIG-

PLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,

PEPM ’07, page 11–20, New York, NY, USA. Association for Computing Machinery.

Davidson, D. (1967). Truth and meaning. Synthese, 17(1):304–323.

de Roever, W.-P. and Engelhardt, K. (1998). Properties of Simulation, page 73–89. Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University Press.

de Saussure, F. (1916). Cours de linguistique générale. Payot, Paris.

Dershowitz, N. (1985). Computing with rewrite systems. Inf. Control., 65(2/3):122–

157.

Devesas Campos, M. and Levy, P. B. (2018). A syntactic view of computational ade-

quacy. In Baier, C. and Dal Lago, U., editors, Foundations of Software Science and

Computation Structures, pages 71–87, Cham. Springer International Publishing.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM, 18(8):453–457.

Edouard (2020). Using c++ containers efficiently. Accessed Sep. 2022. https://blog.

quasar.ai/using-c-containers-efficiently.

Fauconnier, G. and Turner, M. (1998). Conceptual integration networks. Cognitive

Science, 22(2):133–187.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R.

(2002). Extended static checking for java. In Knoop, J. and Hendren, L. J., editors,

Bibliography 145

Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), Berlin, Germany, June 17-19, 2002, pages 234–245. ACM.

Floyd, R. W. (1967). Assigning meanings to programs. Proceedings of Symposium on

Applied Mathematics, 19:19–32.

Fredriksson, O. and Ghica, D. R. (2014). Krivine nets: a semantic foundation for dis-

tributed execution. In Proceedings of the 19th ACM SIGPLAN International Con-

ference on Functional Programming, ICFP ’14, page 349–361, New York, NY, USA.

Association for Computing Machinery.

Freeman, T. and Pfenning, F. (1991). Refinement types for ml. In Proceedings of the

ACM SIGPLAN 1991 Conference on Programming Language Design and Implemen-

tation, PLDI ’91, page 268–277, New York, NY, USA. Association for Computing

Machinery.

Frege, G. (1879). Begriffsschrift, a formula language, modeled upon that of arithmetic,

for pure thought [1879]. From Frege to Gödel: A Source Book in Mathematical Logic,

1931:1–82.

Frege, G. (1892). On sinn and bedeutung. In Beaney, M., editor, The Frege Reader,

pages 151–172. Blackwell.

Fu, R., Dardha, O., and Steuwer, M. (2023). Traced types for safe strategic rewriting.

https://arxiv.org/abs/2304.14154.

Fursin, G., Kashnikov, Y., Memon, A. W., Chamski, Z., Temam, O., Namolaru, M., Yom-

Tov, E., Mendelson, B., Zaks, A., Courtois, E., et al. (2011). Milepost gcc: Machine

learning enabled self-tuning compiler. International journal of parallel program-

ming, 39(3):296–327.

Geeraerts, D. (2017). Lexical semantics. https://oxfordre.com/

linguistics/view/10.1093/acrefore/9780199384655.001.0001/

acrefore-9780199384655-e-29.

Girard, J. (1986). The system F of variable types, fifteen years later. Theor. Comput.

Sci., 45(2):159–192.

Goncharov, S. and Schröder, L. (2013). A relatively complete generic hoare logic for

order-enriched effects. In 28th Annual ACM/IEEE Symposium on Logic in Computer

146 Bibliography

Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 273–282. IEEE

Computer Society.

Guttag, J. (1976). Abstract data types and the development of data structures. In

Proceedings of the 1976 Conference on Data: Abstraction, Definition and Structure,

page 72, New York, NY, USA. Association for Computing Machinery.

Hagedorn, B., Lenfers, J., Koehler, T., Qin, X., Gorlatch, S., and Steuwer, M. (2020).

Achieving high-performance the functional way: a functional pearl on expressing

high-performance optimizations as rewrite strategies. Proc. ACM Program. Lang.,

4(ICFP):92:1–92:29.

Hagedorn, B., Lenfers, J., Koehler, T., Qin, X., Gorlatch, S., and Steuwer, M. (2023).

Achieving high performance the functional way: Expressing high-performance op-

timizations as rewrite strategies. Commun. ACM, 66(3):89–97.

Hennessy, M. and Plotkin, G. D. (1979). Full abstraction for a simple parallel pro-

gramming language. In Becvár, J., editor, Mathematical Foundations of Computer

Science 1979, Proceedings, 8th Symposium, Olomouc, Czechoslovakia, September 3-7,

1979, volume 74 of LNCS, pages 108–120. Springer.

Hindley, R. (1969). The principal type-scheme of an object in combinatory logic.

Transactions of the American Mathematical Society, 146:29–60.

Hinrichs, E. (1986). Temporal anaphora in discourses of english. Linguistics and

Philosophy, 9(1):63–82.

Hoare, C. A. R. (1969a). An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580.

Hoare, T. (1969b). An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580.

Hoare, T., Möller, B., Struth, G., and Wehrman, I. (2011). Concurrent kleene algebra

and its foundations. J. Log. Algebraic Methods Program., 80(6):266–296.

Jackson, D. (2006). Software Abstractions: Logic, Language and Analysis. MIT Press.

Jackson, D. (2012). Software Abstractions: logic, language, and analysis. MIT press.

Bibliography 147

Jackson, H. and Amvela, E. (2000). Words, Meaning and Vocabulary: An Introduction

to Modern English Lexicology. Open linguistics series. Bloomsbury Academic.

Johann, P., Simpson, A., and Voigtländer, J. (2010). A generic operational metatheory

for algebraic effects. In Proceedings of the 25th Annual IEEE Symposium on Logic

in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages

209–218. IEEE Computer Society.

Johnson, M. (1987). The Body in the Mind: The Bodily Basis of Meaning, Imagination,

and Reason. University of Chicago Press, Chicago.

Jones, C. B. (1990). Systematic Software Development Using VDM (2nd Ed.). Prentice-

Hall, Inc., USA.

Jung, C., Rus, S., Railing, B. P., Clark, N., and Pande, S. (2011). Brainy: Effective

selection of data structures. In Proceedings of the 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’11, page 86–97, New

York, NY, USA. Association for Computing Machinery.

Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. (2017a). Rustbelt: Securing

the foundations of the rust programming language. Proc. ACM Program. Lang.,

2(POPL).

Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. (2017b). Rustbelt: securing

the foundations of the rust programming language. Proc. ACM Program. Lang.,

2(POPL).

Kaiser, M. and Lämmel, R. (2009). An Isabelle/HOL-based model of Stratego-like

traversal strategies. In Porto, A. and López-Fraguas, F. J., editors, Proceedings of the

11th International ACM SIGPLAN Conference on Principles and Practice of Declara-

tive Programming, September 7-9, 2009, Coimbra, Portugal, pages 93–104. ACM.

Kamp, H. (1968). Tense Logic and the Theory of Linear Order. PhD thesis, Ucla.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to Modeltheoretic

Semantics of Natural Language, Formal Logic and Discourse Representation Theory.

Kluwer Academic Publishers, Dordrecht.

Katz, J. and Fodor, J. (1963). The structure of a semantic theory. Language, 39:170–210.

Katz, J. J. (1972). Semantic Theory. Harper & Row, New York,.

148 Bibliography

Kieburtz, R. B. (2001). A logic for rewriting strategies. Electronic Notes in Theoretical

Computer Science, 58(2):138–154. STRATEGIES 2001, 4th International Workshop

on Strategies in Automated Deduction - Selected Papers (in connection with IJCAR

2001).

Klabnik, S. and Nichols, C. (2018). The Rust Programming Language. No Starch Press,

USA.

Koppel, J. (2023). Typed multi-language strategy combinators. In Lämmel, R., Mosses,

P. D., and Steimann, F., editors, Eelco Visser Commemorative Symposium, EVCS 2023,

April 5, 2023, Delft, The Netherlands, volume 109 of OASIcs, pages 16:1–16:9. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik.

Kozen, D. (1991). A completeness theorem for kleene algebras and the algebra of

regular events. In Proceedings of the Sixth Annual Symposium on Logic in Computer

Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991, pages 214–225.

IEEE Computer Society.

Kozen, D. (1997). Kleene algebra with tests. ACM Trans. Program. Lang. Syst.,

19(3):427–443.

Kozen, D. (1999). On hoare logic and kleene algebra with tests. In 14th Annual IEEE

Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 167–172.

IEEE Computer Society.

Kripke, S. A. (1980). Naming and Necessity: Lectures Given to the Princeton University

Philosophy Colloquium. Harvard University Press, Cambridge, MA.

Lakoff, G. and Johnson, M. (2003 - 1980). Metaphors we live by / George Lakoff and

Mark Johnson. University of Chicago Press, Chicago, [new edition with a new

afterword]. edition.

Lambek, J. (1958). The mathematics of sentence structure. Journal of Symbolic Logic,

65(3):154–170.

Lämmel, R. (2003). Typed generic traversal with term rewriting strategies. J. Log.

Algebraic Methods Program., 54(1-2):1–64.

Lämmel, R. (2007). Scrap your boilerplate with xpath-like combinators. In Proceedings

of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Bibliography 149

Languages, POPL ’07, page 137–142, New York, NY, USA. Association for Comput-

ing Machinery.

Lämmel, R., Thompson, S., and Kaiser, M. (2013). Programming errors in traversal

programs over structured data. Science of Computer Programming, 78(10):1770–

1808.

Lämmel, R. and Visser, J. (2002). Design patterns for functional strategic program-

ming. In Fischer, B. and Visser, E., editors, Proceedings of the 2002 ACM SIGPLAN

Workshop on Rule-Based Programming, Pittsburgh, Pennsylvania, USA, 2002, pages

1–14. ACM.

Langacker, R. W. (1987). Foundations of cognitive grammar / Ronald W. Langacker.

Stanford University Press, Stanford, Calif.

Leino, K. R. M. (2005). Efficient weakest preconditions. Inf. Process. Lett., 93(6):281–

288.

Leino, K. R. M. (2010). Dafny: An automatic program verifier for functional correct-

ness. In Clarke, E. M. and Voronkov, A., editors, Logic for Programming, Artificial

Intelligence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,

April 25-May 1, 2010, Revised Selected Papers, volume 6355 of LNCS, pages 348–370.

Springer.

Leroy, X. and Grall, H. (2009). Coinductive big-step operational semantics. Infor-

mation and Computation, 207(2):284–304. Special issue on Structural Operational

Semantics (SOS).

Lewis, D. (1970). General semantics. Synthese, 22(1/2):18–67.

Liskov, B. and Zilles, S. (1974). Programming with abstract data types. In Proceedings

of the ACM SIGPLAN Symposium on Very High Level Languages, page 50–59, New

York, NY, USA. Association for Computing Machinery.

Mcgilvray, J. (1998). Meanings are syntactically individuated and found in the head.

Mind and Language, 13(2):225–280.

Milner, R. (1978). A theory of type polymorphism in programming. Journal of Com-

puter and System Sciences, 17(3):348–375.

150 Bibliography

Mitkov, R. (2022). The Oxford Handbook of Computational Linguistics. Oxford Univer-

sity Press.

Montague, R. (1970). English as a formal language. In Visentini, B., editor, Linguaggi

nella societa e nella tecnica, pages 188–221. Edizioni di Communita.

Morgan, C. (1994). Programming from specifications, 2nd Edition. Prentice Hall Inter-

national series in computer science. Prentice Hall.

Nelson, B. J. (1981). Remote procedure call. PhD thesis, USA. AAI8204168.

Newmeyer, F. J. (1986). Linguistic theory in America / Frederick J. Newmeyer. Academic

Press, Orlando ;, second edition. edition.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer.

Orr, D. A. H. (2019). Finding unique items - hash vs sort? Accessed Sep. 2022. https:

//douglasorr.github.io/2019-09-hash-vs-sort/article.html.

Palmer, F. (1981). Semantics. Cambridge low priced editions. Cambridge University

Press.

Partee, B. H. (1984). Nominal and temporal anaphora. Linguistics and Philosophy,

7(3):243–286.

Pearce, D. J. (2021). A lightweight formalism for reference lifetimes and borrowing in

rust. ACM Trans. Program. Lang. Syst., 43(1).

Pierce, B. C. (2002). Types and Programming Languages. MIT Press, 1 edition.

Pietroski, P. (2017). Semantic internalism. The Cambridge companion to chomsky,

2:196–216.

Plotkin, G. and Power, J. (2001). Adequacy for algebraic effects. In Honsell, F. and

Miculan, M., editors, Foundations of Software Science and Computation Structures,

pages 1–24, Berlin, Heidelberg. Springer Berlin Heidelberg.

Plotkin, G. D. (1976). A powerdomain construction. SIAM J. Comput., 5(3):452–487.

Portner, P. and Partee, B. H. (2002). Formal semantics : the essential readings / edited

by Paul Portner and Barbara H. Partee. Blackwell, Oxford.

Bibliography 151

Prior, A. N. (1955). Time and Modality. Greenwood Press, Westport, Conn.

Pustejovsky, J. (1991). The syntax of event structure. Cognition, 41(1):47–81.

Pustejovsky, J. (2006). Lexical semantics: Overview. In Brown, K., editor, Encyclopedia

of Language & Linguistics (Second Edition), pages 98–106. Elsevier, Oxford, second

edition edition.

Reynolds, J. C. (1974). Towards a theory of type structure. In Robinet, B. J., editor,

Programming Symposium, Proceedings Colloque sur la Programmation, Paris, France,

April 9-11, 1974, volume 19 of Lecture Notes in Computer Science, pages 408–423.

Springer.

Russell, B. (1905). On denoting. Mind, 14(56):479–493.

serde-rs (2023). Serde. https://serde.rs.

Shacham, O., Vechev, M., and Yahav, E. (2009). Chameleon: Adaptive selection of

collections. In Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’09, page 408–418, New York, NY, USA.

Association for Computing Machinery.

Siegmund, N., Kolesnikov, S. S., Kästner, C., Apel, S., Batory, D. S., Rosenmüller, M.,

and Saake, G. (2012). Predicting performance via automated feature-interaction

detection. In Glinz, M., Murphy, G. C., and Pezzè, M., editors, 34th International

Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,

pages 167–177. IEEE Computer Society.

Simpson, A. (2004). Computational adequacy for recursive types in models of in-

tuitionistic set theory. Annals of Pure and Applied Logic, 130(1):207–275. Papers

presented at the 2002 IEEE Symposium on Logic in Computer Science (LICS).

Smits, J. and Visser, E. (2020). Gradually typing strategies. In Lämmel, R., Tratt, L., and

de Lara, J., editors, Proceedings of the 13th ACM SIGPLAN International Conference

on Software Language Engineering, SLE 2020, Virtual Event, USA, November 16-17,

2020, pages 1–15. ACM.

Sozeau, M. (2014). Proof-relevant rewriting strategies in coq. In At Coq Workshop.

Spivey, J. M. (1989). The Z Notation: A Reference Manual. Prentice-Hall, Inc., USA.

152 Bibliography

Steedman, M. (2001). The Syntactic Process. The MIT Press.

Steedman, M. and Baldridge, J. (2011). Combinatory categorial grammar. Non-

Transformational Syntax: Formal and Explicit Models of Grammar, pages 181–224.

Stich, S. P. and Warfield, T. A., editors (1994). Mental Representation: A Reader. Black-

well, Cambridge, USA.

Stokke, B. (2022). im conslist: A rust cons-list implementation. Accessed Sep. 2022.

https://docs.rs/im/10.2.0/im/conslist/struct.ConsList.html.

Stoy, J. (1985). Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. Computer Science Series. MIT Press.

Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., Bharga-

van, K., Fournet, C., Strub, P.-Y., Kohlweiss, M., Zinzindohoue, J.-K., and Zanella-

Béguelin, S. (2016). Dependent types and multi-monadic effects in f*. In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’16, page 256–270, New York, NY, USA. Association for Comput-

ing Machinery.

Swierstra, W. and Baanen, T. (2019). A predicate transformer semantics for effects

(functional pearl). Proc. ACM Program. Lang., 3(ICFP).

Talmy, L. (2000). Toward a Cognitive Semantics: Concept Structuring Systems. The MIT

Press.

Tarski, A. (1944). The semantic conception of truth: and the foundations of semantics.

Philosophy and Phenomenological Research, 4(3):341–376.

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2009). Software architecture: foun-

dations, theory, and practice. Wiley Publishing.

Torlak, E. and Bodı́k, R. (2013). Growing solver-aided languages with rosette. In

Hosking, A. L., Eugster, P. T., and Hirschfeld, R., editors, ACM Symposium on New

Ideas in Programming and Reflections on Software, Onward! 2013, part of SPLASH

’13, Indianapolis, IN, USA, October 26-31, 2013, pages 135–152. ACM.

Torlak, E. and Bodik, R. (2014). A lightweight symbolic virtual machine for solver-

aided host languages. In Proceedings of the 35th ACM SIGPLAN Conference on

Bibliography 153

Programming Language Design and Implementation, PLDI ’14, page 530–541, New

York, NY, USA. Association for Computing Machinery.

Trier, J. (1931). Der deutsche Wortschatz im Sinnbezirk des Verstandes: die Geschichte

eines Sprachlichen feldes. Number Bd. 1 in Der deutsche Wortschatz im Sinnbezirk

des Verstandes. Verlag nicht ermittelbar.

van Eijck, J. and Unger, C. (2010). Extension and Intension, page 183–204. Cambridge

University Press.

Vazou, N., Rondon, P. M., and Jhala, R. (2013). Abstract refinement types. In Felleisen,

M. and Gardner, P., editors, Programming Languages and Systems - 22nd European

Symposium on Programming, ESOP 2013, Held as Part of the European Joint Con-

ferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24,

2013. Proceedings, volume 7792 of Lecture Notes in Computer Science, pages 209–228.

Springer.

Vazou, N., Seidel, E. L., Jhala, R., Vytiniotis, D., and Peyton-Jones, S. (2014). Refine-

ment types for haskell. In Proceedings of the 19th ACM SIGPLAN International Con-

ference on Functional Programming, ICFP ’14, page 269–282, New York, NY, USA.

Association for Computing Machinery.

Visser, E. (2001). Stratego: A language for program transformation based on rewriting

strategies system description of stratego 0.5. In Middeldorp, A., editor, Rewriting

Techniques and Applications, volume 2051 of LNCS, pages 357–361. Springer.

Visser, E., Benaissa, Z. E., and Tolmach, A. P. (1998). Building program optimizers

with rewriting strategies. In Felleisen, M., Hudak, P., and Queinnec, C., editors,

Proceedings of the third ACM SIGPLAN International Conference on Functional Pro-

gramming (ICFP ’98), Baltimore, Maryland, USA, September 27-29, 1998, pages 13–26.

ACM.

Visser, E. and Benaissa, Z. E.-A. (1998). A core language for rewriting. Electronic Notes

in Theoretical Computer Science, 15:422–441. International Workshop on Rewriting

Logic and its Applications.

Wachsmuth, G., Konat, G. D. P., and Visser, E. (2014). Language design with the

spoofax language workbench. IEEE Softw., 31(5):35–43.

154 Bibliography

Wagemaker, J., Foster, N., Kappé, T., Kozen, D., Rot, J., and Silva, A. (2022). Concurrent

netkat - modeling and analyzing stateful, concurrent networks. In Sergey, I., editor,

Programming Languages and Systems - 31st European Symposium on Programming,

ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, volume 13240

of LNCS, pages 575–602. Springer.

Weiss, A., Gierczak, O., Patterson, D., and Ahmed, A. (2021). Oxide: The essence of

rust. https://arxiv.org/abs/1903.00982.

Wicht, B. (2012). C++ benchmark – std::vector vs std::list vs std::deque.

Accessed Sep. 2022. https://baptiste-wicht.com/posts/2012/12/

cpp-benchmark-vector-list-deque.html.

Winskel, G. (1993). The formal semantics of programming languages: an introduction.

MIT Press, Cambridge, MA, USA.

Winter, V. L. and Subramaniam, M. (2004). The transient combinator, higher-order

strategies, and the distributed data problem. Sci. Comput. Program., 52:165–212.

Wirsing, M. (1990). Algebraic specification. In Van Leeuwen, J., editor, Formal Models

and Semantics, Handbook of Theoretical Computer Science, pages 675–788. Else-

vier, Amsterdam.

Wollrath, A., Riggs, R., and Waldo, J. (1996). A distributed object model for the ja-

vatm system. In Proceedings of the 2nd Conference on USENIX Conference on Object-

Oriented Technologies (COOTS) - Volume 2, COOTS’96, page 17, USA. USENIX As-

sociation.

Xu, G. (2013). Coco: Sound and adaptive replacement of java collections. In Castagna,

G., editor, ECOOP 2013 - Object-Oriented Programming - 27th European Conference,

Montpellier, France, July 1-5, 2013. Proceedings, volume 7920 of Lecture Notes in Com-

puter Science, pages 1–26. Springer.

