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Panopticon: A Universal Method Invocation Library for Rust
XUEYING QIN, University of Southern Denmark, Denmark and The University of Edinburgh, UK

In this paper, we present a universal method invocation (UMI) library for Rust. The UMI library supports

location transparency by encapsulating the message-passing details and provides programmers an interface

that allows them to migrate a monolithic program into a distributed setting, while preserving the semantics

and without massive changes to the syntax of the program. This study provides a perspective on designing

distributed systems: A monolithic program can be viewed as an abstraction of a distributed program, specifying

what functionalities a program attempts to achieve instead of how these functionalities are achieved in a

distributed setting by abstracting away the details of distributed memory management and message passing

over a network.

CCS Concepts: • Theory of computation→ Operational semantics; • Computing methodologies→
Distributed programming languages.

Additional Key Words and Phrases: remote procedure call, memory management, ownership

1 INTRODUCTION
Distributed computing has extensive application in areas such as cloud computing, big data pro-

cessing, web services, and blockchain systems, driving the development of modern, large-scale,

and resilient software systems. Distributed systems offer many significant advantages such as

scalability, fault tolerance, resource sharing, and geographical distribution.

However, compared tomonolithic systems, distributed systems are more complex and challenging

to design, implement, test and debug due to the necessity for coordination, synchronisation,

and communication among distributed components. Therefore, it is a common practice to start

with a monolithic design when implementing a system, as this approach simplifies the initial

implementation and deployment process. Such a monolithic system can later be re-structured and

migrated into a distributed design when it needs to be expanded to a larger scale. However, it still

requires non-trivial effort to migrate a monolithic system into a distributed design.

1.1 Contributions
To address these issues in the design and implementation of a distributed system as well as migrating

a monolithic systems into a distributed setting, we propose our design of a UMI library in Rust. The

design of the UMI library shares the same underlying idea of the remote procedural call (RPC) [Nelson

1981], where a method invocation on an object can be executed on a different node within the

same network, abstracting over the underlying message-passing details. Such a design allows

programmers to model a distributed system focusing on what functional features are required

instead of how these functional features are achieved via complicated network communications.

Moreover, with this framework, programmers can migrate applications from a monolithic design

to a distributed architecture without massive changes to source code or the needs of high-level

expertise in microservices. Last but not least, by choosing Rust as the language for implementing

the UMI framework, we are able to avoid distributed memory management hassles like distributed

garbage collection while extending Rust’s memory safety and data-racing free guarantees into the

distributed setting.

In summary, we make following contributions:
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• We provide a usable Rust implementation of the UMI framework (section 3) and demonstrate

how such a framework can be used in migrating monolithic programs into a distributed

setting (section 3.7).

• We present a distributed borrow checking algorithm and an extended lifetime management

mechanism for distributed memory management (section 3.5 and section 3.6).

• We formalise the structural operational semantics based on Pearce [2021]’s featherweight

Rust (FR) for a core calculus of monolithic Rust programs and distributed Rust programs

written in the UMI framework (section 4).

• We prove a location transparency theorem: With the UMI framework, when a monolithic

program is deployed to multiple nodes, its semantics is preserved (section 4).

1.2 Limitations
There are some limitations of the UMI framework worth mentioning upfront. Firstly, the UMI

framework does not handle network communication errors. Since technically it is difficult to

handle these errors in a distributed program while maintaining the same interface of its monolithic

counterpart without the language feature throwing and handling exceptions. Also, we plan to

integrate this framework within micro-services platforms, where server errors are managed by

cloud service providers. Supervision strategies can be employed to take snapshots and restart from

failures, ensuring these issues do not pose a critical problem for the UMI framework’s design.

In addition, both the implementation and the formalisation of the UMI framework are determin-

istic and sequential. In the current stage, such a design decision is sufficient to demonstrate of core

concepts of the UMI framework including location transparency and memory safety. However, as

potential future work, it would be nice to model the UMI framework that accounts for concurrency.

Moreover, there are limitations in the formal system we have presented, for instance, functions

and structs are missing. These issues are caused by the formal system we build upon. Many different

styles of formal systems of Rust have been surveyed for formalising the UMI framework, however it

is rather hard to find a formal system that models sufficient core features of the surface language of

Rust. Wewill discuss related formalisation of Rust in section 5. In order to have a better formalisation

of our system, it is required to have a better formalisation of the surface language of Rust, which is

out of the scope of this work.

2 BACKGROUND
In distributed computing, an RPC allows a method invocation to be executed on another computer

on a shared network. One application of RPCs is that in an object-oriented programming paradigm,

it enables a method to be invoked on an object stored on a different machine and exchange data

across the network. Such a remote method invocation has the same encoding as a local invocation,

without the programmer explicitly coding the details for the remote interaction. However, it is hard

to support location transparency, i.e., in most existing frameworks (e.g., Java RMI [Pitt and McNiff

2001; Wollrath et al. 1996]), remote invocations do not have the same semantics as local invocations.

In addition, memory management is hard in a distributed setting, for example, distributed garbage

collection is complicated.

Rust [Klabnik and Nichols 2018] is a high-level system programming language which guarantees

memory safety and prevents data races by its ownership system for memory management and borrow

checker for tracking object lifetime of all references in a program during compilation. Since Rust’s

semantics guarantees memory safety, we can extend such guarantees to the distributed computing

setting, allowing us to design a RPC framework that provides safe remote method invocations.
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2.1 Remote Procedure Calls
The basic idea behind an RPC system is to make a remote invocation appear like a local invocation,

abstracting away the underlying communication mechanisms like message passing and network

protocols and simplifying distributed computing by providing a familiar programming model.

When a client program calls a procedure, an RPC system will handle the task of transferring the

procedure call request to the remote server, along with any necessary parameters or states. The

server then executes the requested procedure and sends the results back to the client.

RPCs are particularly useful in distributed systems, where different components of an application

are running on separate processes or machines. It allows these components to communicate and

share resources efficiently, as if they were part of a single program. There are many common

applications of RPCs. For instance, RPCs are used in distributed file systems, such as Network File

Systems (NFS) [Corbin 2012; Tay and Ananda 1990], to enable clients to access and manipulate

files on remote servers transparently. In designing web services, RPCs form the basis of many web

service protocols, such as Simple Object Access Protocol (SOAP) [Box et al. 2000; Gudgin et al.

2003], which allows applications to communicate over the internet using XML-based messaging. In

modern microservices architectures, RPCs are often used for inter-process communication between

different microservices, enabling them to collaborate and share functionality. In object-oriented

programming, RPCs are commonly implemented as remote method invocations (RMI), enabling

objects on different machines to interact with each other [Seemakhupt et al. 2023; Sriraman and

Wenisch 2018]. gRPC [gRPC Authors 2024] is a high performance RPC framework for such an

application. The core feature of RMIs is that objects can interact with each other by invoking

methods and passing data across the network. This is the application domain of this study.

2.2 Rust
As a system programming language with emphasises on safety, performance, and concurrency, Rust

is designed to prevent some common programming errors, such as data races and dereferencing

null pointers. Rust achieves these goals through its distinctive features of the ownership system,

borrow checking, and lifetimes.

In Rust, each value has a variable designated as its owner. Each value can only have one owner at

a time, and when the owner goes out of scope, the value is dropped, i.e., deallocated from memory.

This ownership model ensures resources to be managed correctly without the need for a garbage

collector. The ownership system serves as the basis for Rust’s memory safety.

Rust allows functions and data structures to create references to values without taking ownership.

This is called borrowing. When a value is borrowed, the original owner cannot modify the value until

the borrowing ends. The borrow checker is part of Rust’s compiler, which ensures that references

are used safely and do not result in dangling pointers or other memory issues. Borrowing can be

either mutable or immutable, where mutable references have additional constraints to prevent data

races and undefined behaviour. Lifetimes in Rust express how long references should be valid. They

assist the borrow checker in ensuring that references do not outlive the data they point to.

With the design of the ownership system, borrow checking mechanism, and lifetimes, Rust

enforces strict memory safety guarantees, i.e., that all references point to valid memory, without

requiring a garbage collector. These features also ensure that Rust programs do not have dace races

by allowing only one mutable reference at a time or multiple immutable references.
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1 #[proxy_me]

2 struct A { arg: u32 }

3 impl A {

4 #[umi_init]

5 new(arg: u32) -> A { A {arg: arg} }

6 #[umi_struct_method]

7 by_value(&self, a: A) {...}

8 #[umi_struct_method]

9 by_ref(&self, &a: A) {...}

10 #[umi_struct_method]

11 by_mut_ref(&self, &mut a: A) {...} }

1 fn main() {

2 let a_remote =

3 remote!(addr, A::new(10));

4

5 let a_local1 = A::new(1);

6 let a_local2 = A::new(2);

7 let mut a_local3 = A::new(3);

8

9 a_remote.by_value(a_local1);

10 a_remote.by_ref(&a_local2);

11 a_remote.by_mut_ref(&mut a_local3); }

Fig. 1. Migrating A Monolithic Application into A Distributed Setting with UMI

3 THE DESIGN AND IMPLEMENTATION OF THE RUST UMI LIBRARY
In the section, we present our design and implementation of the UMI framework as a library in

Rust. With such a library, a monolithic program can be migrated into a distributed program while

preserving the semantics of the original monolithic program.

3.1 Overview
To give a high-level overview of the design, in figure 1, we introduce an example of migrating a

monolithic program into a distributed setting, by adding the macros provided by the UMI library.

In this example program which allocates instances of the struct A and calls methods on them, the

macro #[proxy_me] implicitly translates the declared type A from a struct that can only refer to local

resources to an enum that can either hold local resources or be a proxy that refers to resources held on

a remote node. The initialisation method is translated by the macro #[umi_init] to create an instance

of the enum A instead of an instance of the struct A. Other methods are also translated by macros to

allow both an invocation on a local instance of A and an invocation on a proxy of A. To create a

proxy instance, the macro remote!(address, ...) is used, while the syntax of the initialisation of a

local instance is unchanged. The invocations of the methods defined for translated struct A take

the same form of the invocation of those original methods. We have to use different macros to

identify syntactic scopes of different code blocks in a piece of Rust program to correctly produce

the corresponding translations.

An invocation on a proxy is encapsulated into a serialised message and sent to the destination

node of which the address is the address stored in the proxy, and then the message is deserialised

and the invocation is executed at the destination. After the execution, the result of the invocation

is again put into a serialised message and passed back to the calling node to be deserialised.

3.2 The Design of the Translation
As we have seen in the example discussed above, the syntax of a monolithic program is translated

into a distributed program by a set of macros. For a declared struct, the macro #[proxy_me] performs

the translation:

struct 𝐴 { fields } { enum 𝐴 { Local ( fields ), Remote ( Address, ID, IsOwner ) }

where the Address is the type of address of the node which stores the resource of a proxy, the ID is

the identifier of a proxy’s resource in the resource table that will be discussed in section 3.3, and

IsOwner denotes whether a proxy is an owned reference or a borrow reference. This macro can
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translates an enum to allow it to represent a proxy by adding a new constructor which is the proxy:

enum 𝐴 { variants } { enum 𝐴 { variants, Remote ( Address, ID, IsOwner ) }
The translation of a enum does not affect its initialisation method, however, the translation of a

struct requires its initialisation method to be changed accordingly — instead of creating an instance

of a type which is a struct, an instance of a Local variant of an enum is created. For instance, in the

example shown in figure 1, the new(arg:u32) method is translated by #[umi_init] into:

1 new(arg: u32) -> A { A::Local {arg: arg} }

Themacro #[umi_struct_method] performs the translation of other methods of a struct. For instance,

the method by_value(&self, a:A) is translated into:

1 fn by_value(&self, a: A) {

2 match &self {

3 Local(...) => { /* do something */ },

4 Remote(...) => { /* remote do something */ }

5 }}

Note that within the pattern matching block for the Remote variant, the invocation is firstly put into

a message and serialised. Then the serialised message is passed to the address stored in the proxy,

and gets deserialised and executed. The result is again put into a message and get serialised. Once

it is returned back to the original node, the result is extracted from the deserialised message. Such

a communication process between nodes via sending and receiving serialisation/deserialisation

messages is completely generated by the macro, freeing programmers from dealing with the

message passing complexity. As for a method of a translated enum, the macro #[umi_enum_method] adds

an additional pattern matching block for the proxy variant to the existing pattern matching.

3.3 Resource Management
To be able to use the UMI library for executing programs that access and manipulate memories of

different nodes within a network, resources and computations need to be made available to and

well-managed by all nodes in the network.

Firstly, a node should be able to store resources owned by different machines and deallocate

those resources according to their lifetime. In Rust, if some resources are owned by a reference

on the same node, and the reference has reached the end of its lifetime, these resources will be

deallocated from the memory. With such a design, resources that are not owned by any reference

on the same node are automatically deallocated. However, in our UMI library, while some resources

on a node 𝑛1 are not owned by any reference on the same node, they can be owned by a reference

on a different node 𝑛2. Although these resources do not have a local owner, the deallocation should

not happen until the remote owner reaches the end of its lifetime. To achieve this goal, on each

UMI server, we design a resource table shown in figure 2 on the left, which has the same lifetime as

the server. We used it to identify and manage local resources involved in remote computations.

Note that the ID in an entry of the table is the ID field in a corresponding proxy, which is globally

unique. If a variable is created locally, it will be put into the table once it is passed into a remote

ID Resource
uid0 ...

uid1 ...

... ...

Full Path Name Type Information
A::new u32, A
A::foo1 (&A, A), ()

... ...

Fig. 2. A resource table (L) and a method registration table (R)
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computation. The entry will not be removed until the remote computation finishes. If a variable

is created via a remote call, it will be put into table on creation and will be deallocated when its

remote owner decides that it should be dropped.

Secondly, we need to make all nodes aware of all methods that can be invoked on a proxy

in order to make computations available on all nodes. To achieve this goal, we use a macro to

register all methods that are available for remote invocations in a method registration table shown

in figure 2 on the right. The macro takes the form of register!(name, arg_types, return_type). The

method registration table holds the full path name, argument types, and return type of methods.

When a serialised invocation message, which takes the form of a plain string, is received by a

node, the method to be invoked is deserialised and reconstructed according to the type information

recorded in the registration table.

3.4 Passing Remote Invocations via Messages
As briefly discussed in section 3.1 and section 3.3, remote invocations and results of executions

are implicitly communicated via serialised and deserialised messages among nodes. We use the

Serde [serde-rs 2023] framework to serialise and deserialise these messages and Rust data structures.

There are different types of messages for passing remote invocations. For instance, a remote

invocation sent to an receiving node is represented as an invocation message which taking the form

of Message::Invoke(fname, variables, invoke_op), where fname is the full path name of the method,

each variable is annotated with its ownership information (owned or immutably/mutably bor-

rowed), and invoke_op specifies the ownership information of the return value. The result of the

execution of a remote invocation is passed back to the calling node via a return message taking

the form of Message::Return(return_var), where the return_var is also annotated with its ownership

information. Another important type of messages is the deallocation message which takes the

form of Message::Drop(id), where the id corresponds to an entry key in the resource table shown in

figure 2. Such a message instructs some remotely owned resources to be deallocated.

3.5 Extending Borrow Checking into Distributed Settings
To execute a deserialised remote method invocation on the node which receives the invocation, the

first step is to gather serialised data as well as the ownership information of each variable involved in

the method. In this step, we do not perform any reconstruction of these variables; instead, variables

are simply prepared in an appropriate format that can be reconstructed during the execution of the

method. Such an format is implemented as Argument, which keeps the information of the variables

related to borrow checking, and stores the data of the variable. The detailed implementation of this

step is shown in listing 1, listing 2, and listing 3.

A serialised variable has a label indicating whether it is a piece of data copied or moved from

the caller (OwnedLocal), a remote reference owned by the caller (OwnedRemote), a remote reference

immutably borrowed by the caller (RefRemote), or a remote reference mutably borrowed by the caller

(MutRefRemote). As shown in listing 1, if a variable is serialised data, which is copied or moved from

the caller, it will be kept as serialised, since the deserialisation and reconstruction process will

happen during the invocation of the method (line 5). If a variable is a proxy which is located at

the receiver, then it will be obtained from the resource table shown in figure 2. According to its

ownership information, if it is moved, then the corresponding entry will be removed from the

resource table (line 6 — line 9).

Listing 1. Gathering variables from an invocation message: OwnedLocal and OwnedRemote

1 Message::Invoke(fname, variables, invoke_op) => {

2 let mut arguments: Vec<Argument> = Vec::new();
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3 for v in &variables {

4 match v {

5 Variable::OwnedLocal(s) => { arguments.push(Argument::Serialised(s.clone())); },

6 Variable::OwnedRemote(serialise_remote, addr, id) => {

7 if addr == &local_address {

8 let (owned, is_ref) = mvtable.remove(id).unwrap().into_inner();

9 let arg_ref = Argument::Owned(owned); arguments.push(arg_ref);

10 } else { arguments.push(Argument::Serialised(serialise_remote.to_string())); }},

11 ...}} ... }

If it is immutably borrowed, as shown in listing 2. then the corresponding entry will be immutably

borrowed from the table (line 5 — line 11).

Listing 2. Gathering variables from an invocation message: RefRemote

1 Message::Invoke(fname, variables, invoke_op) => {

2 let mut arguments: Vec<Argument> = Vec::new();

3 for v in &variables {

4 match v {...

5 Variable::RefRemote(serialise_remote, addr, id) => {

6 if addr == &local_address {

7 let borrow = mvtable.get(id).unwrap().borrow();

8 let ptr: *const (Box<dyn Any + Send + Sync>, bool) = &*borrow;

9 unsafe {

10 let back: &(Box<dyn Any + Send + Sync>, bool) = ptr.as_ref().unwrap();

11 let arg_ref = Argument::Ref(&back.0, back.1); arguments.push(arg_ref); }

12 } else {

13 arguments.push(Argument::RemoteRef(serialise_remote.to_string())); }}, ...}} ... }

If it is mutably borrowed, as shown in listing 3 then the corresponding entry will be mutably

borrowed from the table and updated after the execution (line 5 — line 11).

Listing 3. Gathering variables from an invocation message: MutRefRemote

1 Message::Invoke(fname, variables, invoke_op) => {

2 let mut arguments: Vec<Argument> = Vec::new();

3 for v in &variables {

4 match v { ...

5 Variable::MutRefRemote(serialise_remote, addr, id) => {

6 if addr == &local_address {

7 let mut borrow_mut = mvtable.get(id).unwrap().borrow_mut();

8 let ptr: *mut (Box<dyn Any + Send + Sync>, bool) = &mut *borrow_mut;

9 unsafe {

10 let back: &mut (Box<dyn Any + Send + Sync>, bool) = ptr.as_mut().unwrap();

11 let arg_ref = Argument::MutRef(&mut back.0, back.1); arguments.push(arg_ref); }

12 } else {

13 arguments.push(Argument::RemoteMutRef(serialise_remote.to_string())); }}}} ... }

If an argument is a proxy that is not located at the caller, as shown in three else-cases demonstrated

in listing 1 (line 10), listing 2 (line 12 — line 13), and listing 3 (line 12 — line 13), then the proxy will

be passed into the method without any additional modification.

Once the information about all variables is gathered and processed, the invocation will be

executed and the result will then be sent back to the caller. The implementation of the execution of

this invocation is shown in listing 4 and listing 5. The method information, mainly ownership and

type information of the arguments, and return value of a method are retrieved from the registration
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table shown in figure 2 on the right. During the execution of the method via f.call(arguments),

serialised arguments and boxed argument entries retrieved from the resource table are reconstructed

according to the registered type information.

The result of an execution is provided in two formats, serialised data and a boxed data entry.

These two formats are used according to the required ownership information of the return value. As

shown in listing 4, if the method produces an owned result annotated with InvokeOp::Owned, whether

the serialised data res represents some local resources or a proxy, it will be kept as the serialised

form and sent back via a return message (line 8). If the method is an initialisation call sent by the

macro remote!(...) annotated with InvokeOp::Init, the boxed entry data will be inserted into the

resource table and a unique id will be generated. In the return message, the address of the receiver,

the id, and the ownership status which is true are included for the caller to construct a proxy that

owns such a data entry on the receiver (line 9 — line 12).

Listing 4. Executing an invocation and returning the result: Owned and Init

1 Message::Invoke(fname, variables, invoke_op) => { ...

2 let f: &str = &*fname;

3 match lrtable.get(f) {

4 Some(f) => {

5 let ((res, is_local), b) = f.call(arguments);

6 let res_message: Message;

7 match invoke_op {

8 InvokeOp::Owned => { res_message = Message::Return(ReturnVar::Owned(res)); },

9 InvokeOp::Init => {

10 let id = (SystemTime::now(), m_id_gen.next());

11 mvtable.insert(id.clone(), RefCell::new((b, false))); // b is the resource

12 res_message = Message::Return(ReturnVar::OwnedInit(local_address, id, true));}, ... }

13 response(stream, res_message); },

14 None => { /* report unregistered function */ }} }, ...

For a return value that is an immutably or mutably borrowed reference, as shown in listing 5

there are two situations. If the borrowed reference is local to the receiver, the reference itself will

be inserted into the resource table identified by a generated unique id. Such an id and the address

of the receiver will be sent back to the caller for creating an proxy that mirrors this borrowed

reference (line 9 — line 12 and line 15 — line 18). However, if a borrowed reference is not local to

the receiver, meaning it already mirrors a reference on a different node, then it will not be stored

in the resource table, instead, the serialised version of it will be sent back to the caller in a return

message (line 13 and line 19).

Listing 5. Executing an invocation and returning the result: Ref and MutRef

1 Message::Invoke(fname, variables, invoke_op) => { ...

2 let f: &str = &*fname;

3 match lrtable.get(f) {

4 Some(f) => {

5 let ((res, is_local), b) = f.call(arguments); // b is a reference

6 let res_message: Message;

7 match invoke_op { ...

8 InvokeOp::Ref => {

9 if is_local {

10 let id = (SystemTime::now(), m_id_gen.next());

11 mvtable.insert(id.clone(), RefCell::new((b, true)));

12 res_message = Message::Return(ReturnVar::RefMirror(local_address, id));
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13 } else { res_message = Message::Return(ReturnVar::RefBorrow(res)); }},

14 InvokeOp::MutRef => {

15 if is_local {

16 let id = (SystemTime::now(), m_id_gen.next());

17 mvtable.insert(id.clone(), RefCell::new((b, true)));

18 res_message = Message::Return(ReturnVar::MutRefMirror(local_address, id));

19 } else { res_message = Message::Return(ReturnVar::MutRefBorrow(res)); }}}

20 response(stream, res_message); },

21 None => { /* report unregistered function */ }}}, ...

3.6 Extending Lifetime Management to Distributed Settings
Recall that in section 3.3, we have introduced storing and deallocating remotely owned resources

on a node. Here we discuss the design and implementation of a remote deallocation in detail.

In a monolithic Rust program, when a variable that owns some resources reaches the end of

its lifetime, in most cases, out of a program’s scope, the resources it owns will be automatically

deallocated. We extend this feature to the distributed setting. As illustrated in listing 6, when the

given proxy a_proxy is initialised, some resources are allocated to the receiver node with the address

addr (line 5). Although these resources do not have an owner on the same node, they should not be

deallocated until its remote owner a_proxy reaches the end of its lifetime (line 8).

Listing 6. An example of a remote deallocation

1 // on caller

2 fn main() { ...

3 // the data of a_proxy is in the table on the receiver with addr

4 // but it is owned by the caller and will be deallocated when its owner decides to drop it

5 let a_proxy = remote!(addr, A::new(10));

6 ...

7 a_proxy.by_value(...)

8 } // a_proxy is out of scope, its data on the remote machine is dropped

For monolithic programs, the deallocation is achieved via the drop method in the destructor trait

Drop, which in most cases is automatically implemented for Rust types. We extend this drop method

to handle the deallocation of remotely owned resources. The implementation is shown in listing 7.

When a proxy that owns some resources on a node reaches the end of its lifetime, a serialised

deallocation message is automatically sent to the node that holds these resources.

Listing 7. The implementation of a remote deallocation

1 impl Drop for #name {

2 fn drop(&mut self) {

3 match self {

4 Self::Remote(addr, id, is_owner) => {

5 if is_owner.load(Ordering::Relaxed)

6 { let msg = Message::Drop(*id); send(*addr, msg).unwrap(); }},

7 _ => {} }}}

As shown below, once a deallocation message is received by the targeted receiver, the entry with

the corresponding id will be removed from the resource table (i.e., the mvtable in the listing).

1 Message::Drop(id) => { mvtable.remove(&id); }
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3.7 Case Studies
Wedemonstrate the application of our UMI framework— to facilitatemigratingmonolithic programs

to a distributed setting — by present two example distributed reminder programs migrated from a

monolithic using UMI. Note that for the simplicity of presentation, we omit implementation details

for some structs like Entry, application server nodes, and importing packages.

3.7.1 A Pull Reminder Application. Listing 8 and 9 show a distributed reminder application that

extracts events that are due on request. It is very similar to the example shown in figure 1. Specifically,

listing 8 shows that with those macros provided in the UMI library (line 1, line 4, line 6, and line 9),

the struct ReadyReminderServer referring to local resources is translated into an enum referring to

either local resources or remote resources. In addition, its methods can be invoke on both cases.

Listing 8. A Pull Ready Reminder Struct

1 #[proxy_me]

2 pub struct ReadyReminderServer { entries: BinaryHeap<Entry> }

3 impl ReadyReminderServer {

4 #[umi_init]

5 pub fn new() -> ReadyReminderServer { ReadyReminderServer { entries: BinaryHeap::new() } }

6 #[umi_struct_method]

7 pub fn submit_event(&mut self, content: String, ready_at: SystemTime)

8 { let entry = Entry::new(content, ready_at); (&mut self.entries).push(entry); }

9 #[umi_struct_method]

10 pub fn extract_event(&mut self) -> Option<Entry> {

11 let first = (&self.entries).peek();

12 match first {

13 Some(entry) => {

14 if entry.get_time() <= &SystemTime::now() {

15 let e = (&mut self.entries).pop(); return e; }

16 else { return None; }},

17 None => { return None; }}}}

For the reminder application client shown in listing 9, the only change to make it run in a distributed

setting, i.e., initialising the ReadyReminderServer on a different (known) node in the network, is to

replace the local initialisation for a monolithic program (line 2) with the remote initialisation that

creates a proxy whose resources held on the remote node (line 3).

Listing 9. A Pull Ready Reminder Application Client

1 fn main() {

2 // let mut r = ReadyReminderServer::new(); // Old monolithic ReadyReminderServer creation

3 let mut r = remote!("127.0.0.1:3335", ReadyReminderServer::new, ReadyReminderServer);

4 r.submit_event("Goodbye World!".to_string(), SystemTime::now() + Duration::new(3, 0));

5 r.submit_event("Hello World!".to_string(), SystemTime::now() + Duration::new(1, 0));

6 println!("The first event is: {:?}", r.extract_event());

7 thread::sleep(Duration::new(4, 0));

8 println!("The first event is: {:?}", r.extract_event());

9 println!("The first event is: {:?}", r.extract_event()); }

3.7.2 A Push Reminder Application. Listing 10 and 11 show a distributed reminder application

that actively extracts events that are due and pushes notifications to these events’ corresponding

reminder clients. This application demonstrates how a closure representing a notification (as a

CallBack) can be passed to and executed on a remote node.
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Listing 10 again shows the implementation of a ReadyReminderServer that is migrated from a

monolithic implementation. Comparing to the original monolithic implementation, in addition to

the usage of UMI marcos (line 1, line 4, line 6, and line 10), there are two more small changes. Firstly,

each event Entry now records the address of the reminder client to which the event should be pushed

as a callback_addr shown in line 8 — line 9. Secondly, instead of directly executing the callback of

an event that is due (line 18), the callback is pushed to the event’s corresponding reminder client to

be executed (line 19).

Listing 10. A Push Ready Reminder

1 #[proxy_me]

2 pub struct ReadyReminderServer { entries: BinaryHeap<Entry> }

3 impl ReadyReminderServer {

4 #[umi_init]

5 pub fn new() -> ReadyReminderServer { ReadyReminderServer { entries: BinaryHeap::new() } }

6 #[umi_struct_method]

7 pub fn submit_event

8 (&mut self, callback: CallBack, callback_addr: String, ready_at: SystemTime) {

9 let entry = Entry::new(callback, callback_addr, ready_at);(&mut self.entries).push(entry);}

10 #[umi_struct_method]

11 pub fn run(&mut self) {

12 while (&self.entries).len() > 0 {

13 let first = (&self.entries).peek();

14 match first {

15 Some(entry) => {

16 if entry.get_time() <= &SystemTime::now() {

17 let e = (&mut self.entries).pop(); let c = e.clone().unwrap().callback;

18 // c.execute(); // Old monolithic ReadyReminderServer executes a callback locally

19 let c_addr = e.unwrap().callback_addr; remote!(c_addr, c);

20 } else { continue; }},

21 None => { continue; } }}}}

For the push reminder application client shown in listing 11, comparing to the pull reminder

application client, more changes are made to the original monolithic push reminder application

client. Similar to the migration of the pull reminder application client, the local initialisation (line 5)

is replaced with a remote initialisation (line 6). Moreover, this application client is made into a

UMIEndpoint assigned with a fixed address, a resource table, and a method registration table, enabling

that, when its events are due, callbacks can be pushed back and executed according to its address.

Listing 11. A Push Ready Reminder Application Client

1 fn main() {

2 let mut table = RegistryTable::new();

3 let vtable = Arc::new(Mutex::new(ResourceTable::new()));

4 let handle = thread::spawn(move || {

5 // let mut r = ReadyReminderServer::new(); // Old monolithic ReadyReminderServer creation

6 let mut r = remote!("127.0.0.1:3335", ReadyReminderServer::new, ReadyReminderServer);

7 r.submit_event(CallBack::new("Goodbye World!".to_string()), "127.0.0.1:3336".to_string(),

8 SystemTime::now() + Duration::new(8, 0));

9 r.submit_event(CallBack::new("Hello World!".to_string()), "127.0.0.1:3336".to_string(),

10 SystemTime::now() + Duration::new(5, 0));

11 r.run(); });

12 let mut listener = UMIEndpoint::new("127.0.0.1:3336");

13 listener.start(table, vtable);
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𝑡 ::= let mut 𝑥 = 𝑡 ; 𝑡 declaration

| 𝑤 := 𝑡 assignment

| 𝑡 ; 𝑡 sequence

| () unit

| {𝑡 } block

| box 𝑡 heap allocation

| &𝑤 immutable borrow

| &mut 𝑤 mutable borrow

| #𝑤 move

| !𝑤 copy

| 𝑣 value

(Term (T))

𝑤 ::= 𝑥 variable

| ∗𝑤 dereference

(LVal)

𝑣 ::= ⊥
| () unit

| 𝑖 integer

| 𝓁
•

owned reference

| 𝓁
◦

borrowed reference

(Value (V))

𝓁 ∈ A (Location)

Fig. 3. The revised syntax of FR

14 handle.join().unwrap();}

Next, we discuss the formalisation of core concepts of the UMI library base on formalised

operational semantics of a core language of Rust, and present the location transparency theorem.

4 THE OPERATIONAL SEMANTICS
We first provide a small-step operational semantics of a core language of Rust based on Pearce

[2021]’s featherweight Rust (FR), which captures the core features of Rust including copy- and

move-semantics, owned and immutably/mutably borrowed references, and lexical lifetimes. We

then present dFR, which extends FR to include distributed features of the UMI framework such as

remote copy- and move-semantics as well as remote references. We show that such an extension

preserves the semantics of FR, and therefore, the type safety claims of FR is preserved by dFR.

Note that the goal of the formalisation we present is not to design a new formal semantics or type

system of Rust, rather, we aim to utilise existing work which provide formal semantics accompanied

with a type system with type safety proofs for a core surface language of Rust (i.e., FR). Hence, here

we only focus on discussing the semantics extension and the location transparency theorem. For

readers who are curious about FR’s type system, please refer to appendix B.

4.1 The Revised Syntax and Semantics of FR
We present a revised syntax of FR allowing us to express substitutions easier in figure 3. Note that

&𝑤 and &mut 𝑤 represent immutable and mutable borrowing, where &[mut]𝑤 represents either

a immutable or a mutable borrow term. 𝓁
•
and 𝓁

◦
are owned and borrowed references where 𝓁

represents a location in a program state. A copy term is denoted as !𝑤 . In addition, different from

the original FR and Rust which do not have explicit syntax for move, we use #𝑤 to express move

explicitly. The notion of program state S is introduced in figure 4, which is a mapping from a

location to a tuple of value and lifetime. When a value is replaced or its lifetime is expired, it will

be removed from the program state.

We provide the operations of recursively removing values based on a location 𝓁 and a lifetime 𝑘

from the state: (
S ⊗ (𝓁• ↦→ (𝑣, 𝑘))

)
\ 𝓁• = S \ 𝑣
S \ 𝑣 = S otherwise
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S : A⇀ V × L
S | 𝓁 ↦→ (𝑣,𝑚) where: 𝓁 ∈ dom S (update)

S ⊗ 𝓁 ↦→ (𝑣,𝑚) where: 𝓁 ∉ dom S (extend)

Fig. 4. The program state

and respectively:

S \ 𝑘 (𝓁) =
{
S(𝓁) if S(𝓁) = (𝑣, 𝑘)
undefined otherwise

Figure 5 shows the small-step operational semantics of FR, which takes the form of a reduction

𝑆, 𝑡
𝑘−→ 𝑆 ′, 𝑡 ′, where 𝑆 is the program state before the evaluation of the term 𝑡 , and 𝑆 ′, 𝑡 ′ are the

program state and the term after the evaluation. 𝑘 is a lifetime, which we omit when it is irrelevant

to the evaluation of a term.

Evaluating a copy term simply makes a copy of a value 𝑣 at a given location 𝓁, without modifying

the program state, whereas evaluating a move term moves a value 𝑣 out of a given location 𝓁. A

heap allocation box 𝑣 puts the value 𝑣 into a fresh location 𝓁 and gives it the global lifetime ⊤, which
outlives all other lifetimes. The rule for evaluating a borrow term produces a borrowed reference of

the give location 𝓁. Assignment places a given value 𝑣 ′ in the location 𝓁, and recursively deallocates

the old value 𝑣 from the program state. Note that assignments to immutably borrowed references

are prohibited by the type system provided by Pearce’s [2021] original work, the discussion of the

type system is omitted here since focus on the analysis of the SOS of FR programs. The evaluation

of a declaration allocates a given value 𝑣 to a fresh location 𝓁 and substitutes latter occurrence of

the declared variable 𝑥 with the owned reference 𝓁
•
.

S(𝓁) = (𝑣,𝑚)
S, !𝓁• −→ S, 𝑣

(Copy)

S ⊗ 𝓁 ↦→ (𝑣,𝑚), #𝓁• −→ S ⊗ 𝓁 ↦→ ⊥, 𝑣
(Move)

𝓁 ∉ dom S
S, box 𝑣 −→ S ⊗ 𝓁 ↦→ (𝑣,⊤), 𝓁• (Box)

𝓁 ∈ dom S
S,&[mut]𝓁• −→ S, 𝓁◦ (Borrow)

S ⊗ 𝓁 ↦→ (𝑣,𝑚), 𝓁•
:= 𝑣′ −→ (S \ 𝑣) ⊗ 𝓁 ↦→ (𝑣′,𝑚), ()

(Assign Owned)

S ⊗ 𝓁 ↦→ (𝑣,𝑚), 𝓁◦
:= 𝑣′ −→ (S \ 𝑣) ⊗ 𝓁 ↦→ (𝑣′,𝑚), ()

(Assign Borrowed)

𝓁 ∉ dom S

S, let mut 𝑥 = 𝑣; 𝑡
𝑘−→ S ⊗ 𝓁 ↦→ (𝑣, 𝑘 ), 𝑡 [𝓁•/𝑥 ]

(Decl)

S, {𝑣} 𝑘−→ S \ 𝑠𝑢𝑐 𝑘, 𝑣
(Block (base))

S, 𝑡 𝑠𝑢𝑐 𝑘−→ S′, 𝑡 ′

S, {𝑡 } 𝑘−→ S′, {𝑡 ′ }
(Block (suc))

𝓁 ∈ dom S
S, 𝓁•

; 𝑡 −→ S \ 𝓁•, 𝑡
(Seq-OwnedRef)

𝓁 ∈ dom S
S, 𝓁◦

; 𝑡 −→ S, 𝑡
(Seq-BorrowedRef)

S, 𝑖; 𝑡 −→ S, 𝑡
(Seq-Int)

S, (); 𝑡 −→ S, 𝑡
(Seq-Unit)

Fig. 5. The semantics of revised FR
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𝐸 ::= [ · ] | 𝐸; 𝑡 | 𝑣;𝐸 | let mut 𝑥 = 𝐸; 𝑡 | let mut 𝑥 = 𝑣;𝐸 | {𝐸} | box 𝐸 | 𝑤 = 𝐸

𝑆, 𝑡 −→ 𝑆, 𝑡 ′

𝑆, 𝐸 [𝑡 ] −→ 𝑆 ′, 𝐸 [𝑡 ′ ]
(Context)

Fig. 6. Evaluation context

FR’s lifetimes are based on the the lexical structure of programs. A block’s lifetime 𝑘 is based on

the depth of the block. A block with deeper depth suc 𝑘 lives shorter than a block with depth 𝑘 . The

evaluation of a block is the evaluation of the term inside the block. At the end of the evaluation, a

single value 𝑣 is obtained and values that have short lifetime than the current block are deallocated

from the program state. The reduction rules for the evaluation of sequences are intuitive. We

highlight the case for a sequence of which the first term is an owned reference. After evaluating

the owned reference, it is recursively deallocated from the program state.

An evaluation context is a term with a placeholder [·]. 𝐸 [𝑡] is a term obtained by replacing the

placeholder with a term 𝑡 . The evaluation context and reduction rule for the evaluation context are

shown in figure 6.

Next, we discuss the syntax and semantics of dFR, which extends FR with distributed computation

features including remote references and values.

4.2 The Syntax and Semantics of dFR
Figure 7 shows the syntax of dFR, which is the syntax of FR discussed in section 4.1 extended with

the remote declaration let mut@𝑛 𝑥 = 𝑡 ; 𝑡 , remote heap allocation box 𝑡 , remote values 𝑣@𝑛, and

remote terms 𝑡@𝑛. All extensions are highlighted. Note that 𝑛 is the address of a node andN is the

set of addresses. Also, such an extension does not change the type system of FR.

Building upon the program state S for FR, in figure 8, we introduce the distributed program state

D, which maps addresses of nodes to their program states. The reduction rule takes the form of

𝑡 ::= let mut 𝑥 = 𝑡 ; 𝑡 declaration

| let mut@𝑛 𝑥 = 𝑡 ; 𝑡 remote declaration

| 𝑤 := 𝑡 assignment

| 𝑡 ; 𝑡 sequence

| () unit

| {𝑡 } block

| box 𝑡 heap allocation

| box@𝑛 𝑡 remote heap allocation

| &𝑤 immutable borrow

| &mut 𝑤 mutable borrow

| #𝑤 move

| !𝑤 copy

| 𝑣 value

| 𝑣@𝑛 remote value

Term (T)

𝑡𝑑 ::= 𝑡@𝑛 (Remote Term)

𝑤 ::= 𝑥 variable

| ∗𝑤 dereference

LVal

𝑣 ::= ⊥
| () unit

| 𝑖 integer

| 𝓁
•

owned reference

| 𝓁
◦

borrowed reference

Value (V)

𝓁 ∈ A (Location)

𝑛 ∈ N (Node)

Fig. 7. The syntax of dFR
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D : N ⇀ S nt ∈ N × 1 + N × T
C : (𝑛𝑡 )∗ Configuration : D, C

Fig. 8. Distributed program state and configuration stack

D, C −→ D′, C′
, where C and C′

are configuration stacks. For each reduction, the term on the top

of a configuration stack C gets evaluated. The element of the configuration stack can either be a

pair of an address and a hole (𝑛, ?) or a pair of an address and a term (𝑛, 𝑡 ). Utilising the distributed

program state and the configuration stack, we provide the semantics of dFR in figure 9. We explain

the reduction rules for each operation in detail.

To evaluate copying a remotely owned reference 𝓁
•
@𝑛′ on a node with address 𝑛, the first step

shown in the rule Copy (s1) is to update the configuration stack by changing the (𝑛, !𝓁•
@𝑛′) to

(𝑛, ?), and pushing a new address-term pair (𝑛′, !𝓁•) to be evaluated onto the stack. It models that

the computation is passed to the node 𝑛′, which stores the resource owned by the reference 𝓁
•
@𝑛′.

Then the rule Copy (s2) indicates that the copy term !𝓁
•
gets evaluated on the node 𝑛′, and the

resulting value annotated with the address 𝑛′ is passed back to fill in the hole.

Similarly, as for the semantics of moving the value out of a remote owned reference, the first

step shown in Move (s1) is to replace the term on the node 𝑛 with a hole, and pass the copy term

to the node 𝑛′ to evaluate. Then as shown in Move (s2), the resulting value 𝑣 annotated with the

address 𝑛′ is passed back to the node 𝑛 at the end of the evaluation to fill in the hole, and the value

of the location 𝓁 at the program state of the node 𝑛′ is replaced by ⊥, indicating that the value is
moved out of the location 𝓁 at the node 𝑛′.
The rules Box (s1) and Box (s2) show the evaluation of a remote heap allocation box@𝑛′ 𝑣 on

the node 𝑛. Firstly, the heap allocation is passed to the node 𝑛′ to be evaluated, and a hole on the

node 𝑛 is created and pushed onto the configuration stack. The value 𝑣 is stored in a fresh location

𝓁 at the program state of the node 𝑛′ and assigned with the lifetime ⊤ since it is a heap allocation,

hence a owned reference 𝓁
•
is created in the node 𝑛′. Such a owned reference is then passed back

to the node 𝑛 allowing the node 𝑛 to own the location 𝓁 created by the heap allocation on the node

𝑛′. At the end of the evaluation, as shown in the rule Box (s2), on the top of the configuration stack,

the hole create on the node 𝑛 is filled by the owned remote reference 𝓁
•
@𝑛′

The rules Borrow (s1) and Borrow (s2) show the evaluation of immutable and mutable borrow

terms. On a node 𝑛, to borrow a remotely owned reference from a different node 𝑛′, firstly a hole is

created and pushed waiting for a term to be passed back, and the borrow term &[mut]𝓁•
@𝑛′ is

passed to the node 𝑛′ to be evaluated. After it being evaluated on the node 𝑛′, the resulting remotely

borrowed reference 𝓁
◦
@𝑛′ is passed back into the node 𝑛 in the hole on the configuration stack.

A remote assignment to an owned reference 𝓁
•
@𝑛′ := 𝑣 ′ on the node 𝑛 assigns a new value 𝑣 ′ to

its remotely owned reference on the node 𝑛′, which is shown in the rule Assign Owned (s1) and

Assign Owned (s2). The first step is again leaving a hole awaiting to be filled on the configuration

stack and passing the assignment to the node 𝑛′ to be evaluated. In the next step, the evaluation of

the assignment on the node 𝑛′ modifies the program state on 𝑛′ by recursively deallocates the old

value 𝑣 which is stored in the location 𝓁. And then the location 𝓁 on the node 𝑛′ is assigned with

the new value 𝑣 ′. Since the assignment produces only a unit value (), it will be passed back and fill

in the hole on the configuration stack.

The evaluation of a remote assignment to a borrowed reference is similar shown in rules Assign

Borrowed (s1) and Assign Borrowed (s2). Note that again, since dFR extends FR without any

modification of FR’s type system, same to assignments in FR, remote assignments to immutable

references in dFR are also prohibited by the type system.
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D(𝑛′ ) (𝓁) = (𝑣,𝑚)
D, C ++ (𝑛, !𝓁•

@𝑛′ ) −→ D, C ++ (𝑛, ?) ++ (𝑛′, !𝓁• )
(Copy (s1))

D(𝑛′ ) (𝓁) = (𝑣,𝑚)
D, C ++ (𝑛, ?) ++ (𝑛′, !𝓁• ) −→ D, C ++ (𝑛, 𝑣@𝑛′ )

(Copy (s2))

D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, #𝓁•
@𝑛′ ) −→

D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, ?) ++ (𝑛′, #𝓁• )

(Move (s1))

D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, ?) ++ (𝑛′, #𝓁• ) −→
D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ ⊥), C ++ (𝑛, 𝑣@𝑛′ )

(Move (s2))

D, C ++ (𝑛, (box@𝑛′ 𝑣) ) −→ D, C ++ (𝑛, ?) ++ (𝑛′, box 𝑣)
(Box (s1))

𝓁 ∉ dom D(𝑛′ )
D, C ++ (𝑛, ?) ++ (𝑛′, box 𝑣) −→ D | (𝑛′ ↦→ D(𝑛′ ) ⊗ 𝓁 ↦→ (𝑣,⊤) ), C ++ (𝑛, 𝓁•

@𝑛′ )
(Box (s2))

𝓁 ∈ dom D(𝑛′ )
D, C ++ (𝑛,&[mut]𝓁•

@𝑛′ ) −→ D, C ++ (𝑛, ?) ++ (𝑛′,&[mut]𝓁• )
(Borrow (s1))

𝓁 ∈ dom D(𝑛′ )
D, C ++ (𝑛, ?) ++ (𝑛′,&[mut]𝓁• ) −→ D, C ++ (𝑛, 𝓁◦

@𝑛′ )
(Borrow (s2))

D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, 𝓁◦
@𝑛′

:= 𝑣′ ) −→
D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, ?) ++ (𝑛′, 𝓁◦

:= 𝑣′ )

(Assign Borrowed (s1))

D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, ?) ++ (𝑛′, 𝓁◦
:= 𝑣′ ) −→

D ⊗ (𝑛′ ↦→ S \ 𝑣 ⊗ 𝓁 ↦→ (𝑣′,𝑚) ), C ++ (𝑛, ())

(Assign Borrowed (s2))

D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, 𝓁◦
@𝑛′

:= 𝑣′ ) −→
D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, ?) ++ (𝑛′, 𝓁◦

:= 𝑣′ )

(Assign Borrowed (s1))

D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣,𝑚) ), C ++ (𝑛, ?) ++ (𝑛′, 𝓁◦
:= 𝑣′ ) −→

D ⊗ (𝑛′ ↦→ S \ 𝑣 ⊗ 𝓁 ↦→ (𝑣′,𝑚) ), C ++ (𝑛, ())

(Assign Borrowed (s2))

D, C ++ (𝑛, let mut@𝑛′ 𝑥 = 𝑣; 𝑡 ) −→ D, C ++ (𝑛, 𝑡 [?/𝑥 ] ) ++ (𝑛′, let mut 𝑥 = 𝑣;𝑥 )
(Decl (s1))

𝓁 ∉ dom D(𝑛′ )
D, C ++ (𝑛, 𝑡 [?/𝑥 ] ) ++ (𝑛′, let mut 𝑥 = 𝑣;𝑥 ) −→
D ⊗ (𝑛′ ↦→ S ⊗ 𝓁 ↦→ (𝑣, 𝑘 ) ), C ++ (𝑛, 𝑡 [𝓁•

@𝑛′/𝑥 ] )

(Decl (s2))

S, 𝑡 −→ S′, 𝑡 ′

D ⊗ (𝑛 ↦→ S), C ++ (𝑛, 𝑡 ) −→ D ⊗ (𝑛 ↦→ S′ ), C ++ (𝑛, 𝑡 ′ )
(Local Terms)

D ⊗ (𝑛′ ↦→ S), C ++ (𝑛′, 𝑡 ) −→ D ⊗ (𝑛′ ↦→ S′ ), C ++ (𝑛′, 𝑡 ′ )
D ⊗ (𝑛′ ↦→ S), C ++ (𝑛, 𝑡@𝑛′ ) −→ D ⊗ (𝑛′ ↦→ S′ ), C ++ (𝑛, 𝑡 ′@𝑛′ )

(Remote Terms)

Fig. 9. The semantics of dFR
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Demonstrated in Decl (s1) and Decl (s2), the evaluation of a remote declaration is more com-

plicated. The first step shown in Decl (s1) leaves a hole to be filled by the resulting term in the

substitution of the declared variable 𝑥 . Then the declaration is passed to the node 𝑛′ to be evaluated.
Shown in Decl (s2), once a fresh location 𝓁 on the node 𝑛′ is allocated with the value 𝑣 , the owned

reference 𝓁
•
will then be passed back to the node 𝑛 and all occurrences of the declared variable 𝑥

on the node 𝑛 will be substituted with the remote owned reference 𝓁
•
@𝑛′.

Lastly, all reduction rules for evaluating terms presented in FR are adapted into reduction rules

for evaluating dFR via the rule Local Term. As for the evaluation of remote terms, shown in the

rule Remote Term, if a local term 𝑡 on the node 𝑛′ is evaluated into 𝑡 ′, then when it is treated as a

remote term 𝑡@𝑛′ on the node 𝑛, it will be evaluated to a remote term 𝑡 ′@𝑛′ on the node 𝑛.

In the next section, we present and prove a location transparency theorem, which states that

when translating a monolithic program written in FR into a distributed program written in dFR,

the semantics of the monolithic program is preserved.

4.3 Preservation of Semantics when Translating a FR Program into a dFR Program
As we have mentioned in previous sections, by extending FR into dFR, the type system and static

borrow checking of the validity of owning, immutably borrowing and mutably borrowing resources

remain unchanged. By formalising the semantics of FR and dFR, we would like to show that, when

we flatten a distributed program in dFR into a monolithic program in FR, the flattened result of

the execution of the distributed program should be the same as the result of the execution of the

flattened single node program. By demonstrating that the distributed program preserves the original

semantics of the monolithic program, we can then conclude that the memory safety guarantees

provided by FR’s type system and static checking can be extended into distributed program in dFR.

Formally, we state this semantic preservation property of the distributed extension dFR in the

location transparency theorem 4.1.

Before giving the definition of the location transparency theorem, we define a relation{ that

fuses two reduction steps of an operation in dFR introduced in section 4.2. The reduction relation

for each dFR operation is decomposed into two steps just for presentational purposes. The location

transparency theorem states that fusing two reduction steps of a dFR operation gives the semantics

of the operation, which preserves the semantics of its corresponding operation defined in FR as a

single step reduction relation. Formally, the fusion relation is defined as:

Definition 4.1 (Fusion Relation). For any term that contains remote components, for instance, a

remote copy, a fusion relation is defined by two reductions in the operational model for dFR. For any

term that does not contain remote components, for instance, a local term, a fusion relation is just a

single reduction.

D, C ++ (𝑛, 𝑡) { D′,𝐶 ++ (𝑛, 𝑡 ′) iff

(𝑡 is remote =⇒ ∃𝑡 ′′, C′,D′′ . D, C ++ (𝑛, 𝑡) −→ D′′, C′ ++ (𝑛, 𝑡 ′′)
∧ D′′, C′ ++ (𝑛, 𝑡 ′′) −→ D′, C ++ (𝑛, 𝑡 ′))

∨(¬(𝑡 is remote) =⇒ D, C ++ (𝑛, 𝑡) −→ D′, C ++ (𝑛, 𝑡 ′))

With the definition of the fusion relation, we state the location transparency theorem as below.

Note that the reverse direction of the theorem does not hold. Since to extend a given single node

program into a distributed program by allocating the program state on arbitrary nodes and making

the term involved in the execution containing remote components that live on arbitrary nodes may

not lead to constructing a distributed program that can be successfully executed. However, because
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our goal is to show that the distributed program preserves the same behaviour as if it is a single

node program, having only one direction in the theorem is sufficient for our claim.

Theorem 4.1 (Location Transparency). For any term 𝑡 , given an initial distributed program

state D and an initial single node program state S, where the flattened distributed program state

equals to the single node program state, if a distributed execution of a term 𝑡 that may be a remote

term or contain remote component with the distributed program state D results in a distributed

program state D′
and a value 𝑣 which can be either remote or local, then the execution of the

flattened term 𝑡 with the single node program state S will gives a state S′
and value 𝑣 ′, where the

flattened resulting distributed program state |D′ | equals to the 𝑆 ′ and the flattened value 𝑣 equals

to 𝑣 ′. We make locations on all nodes distinct to simplify the proof.

∀𝑡 ∈ T . D,𝐶 ++ (𝑛, 𝑡) { D′,𝐶 ++ (𝑛, 𝑣) ∧ |D| = S
⇒

S, 𝑡 |@ −→ S′, 𝑣 ′ ∧ |D′ | = S′ ∧ 𝑣 |@ = 𝑣 ′

where | · | and ·|@ are operators that erase addresses of nodes from distributed program states and

terms. Specifically, | · | is defined as:

|D| =
⋃

∀𝑛∈domD
D(𝑛)

and ·|@ is defined as:

(let mut@𝑛 𝑥 = 𝑡 ; 𝑡) |@ = let mut 𝑥 = 𝑡 ; 𝑡 𝑣@𝑛 |@ = 𝑣 𝑡@𝑛 |@ = 𝑡 |@
box@𝑛 𝑡 |@ = box 𝑡 𝓁

•
@𝑛 := 𝑣 |@ = 𝓁

•
:= 𝑣 𝓁

◦
@𝑛 := 𝑣 |@ = 𝓁

◦
:= 𝑣

Since a term 𝑡 is always a closed term, we prove the theorem 4.1 by structural induction on the

term 𝑡 . The proofs are presented in appendix A, which focuses on presenting proofs of the cases

concerning the remote extensions in dFR’s reduction rules given in section 4.2.

4.4 Summary
In section 3, we have discussed the design and implementation of a UMI framework as a library in

Rust. The core designed concepts of such a library— extending Rust’s memory safety guarantees into

a distributed setting — is presented in the formalisation of a distributed extension of a core calculus

of Rust in this section. By proving the location transparency theorem 4.1, we demonstrate that a

distributed program developed using the UMI framework preserves the semantics of a monolithic

program from which it is translated. Therefore, with our UMI framework, Rust’s memory safety

guarantees provided by its type system, lifetime and ownership system, and borrow checking

mechanism are indeed extended into a distributed setting.

5 RELATEDWORK
Design and Implementations of Remote Procedural Call. Described in Nelson’s [1981] thesis, RPC

allows programs in separate address spaces to communicate synchronously. By experimenting

with different implementations of RPC, Nelson [1981] argues that RPC is an efficient and effective

programming tool for distributed systems. Java RMI [Pitt and McNiff 2001; Wollrath et al. 1996]

implements the concept of RPC in a object-orientated programming language. It outlines a model

for distributed objects within the Java environment which allows Java objects to communicate

across different address spaces. This RMI framework is designed to integrate seamlessly with the

Java language, preserving as much of the Java object model’s semantics as possible. As for its

memory management mechanism, it contains a design of distributed garbage collection, ensuring
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that remote objects which are no longer referenced by any client should be automatically garbage

collected. However, the Stub object in this framework does not always preserves the semantics

of the Java object model. In addition, tarpc [Google 2024] implemented as a Rust library shares a

similar underlying idea.

Our UMI framework is designed to be truly integrated with Rust as it is semantic preserving. The

idea of location transparency and seamless integration of distributed computing presented in this

UMI framework is related to the “seamless" distributed computing model where distributed pro-

grams maintain the same syntax and semantics as single-node executions, using node annotations

for distribution, without requiring explicit communication handling [Fredriksson and Ghica 2012]

and the formal model Krivine Nets presented by Fredriksson and Ghica [2014], which extends the

classic Krivine abstract machine to support distributed execution. This extension allows a seamless

and transparent RPC mechanism to handle higher-order functions without transmitting the actual

code. Krivine Nets enable the seamless integration of distributed computing into programming

languages by eliminating explicit communication and process management from source code.

The RPC calculus presented by Cooper andWadler [2009] explores the design and implementation

of a symmetrical location-aware programming language atop a stateless server. They address the

challenge of maintaining control state transparently within a programming language, despite the

stateless nature of web servers, which typically do not retain client-specific session information.

They outline the RPC calculus 𝜆rpc, which is enriched with location annotations to indicate where

code should execute, supporting semantics where computation steps can occur at designated

locations; and a translation from 𝜆rpc to a first-order client-server calculus (𝜆cs), which models an

asymmetrical client-server environment. The subsequent work for such a RPC calculus present

by [Choi et al. 2020] proposes a polymorphic RPC calculus that extends the typed RPC calculus with

polymorphic locations. It introduces a new polymorphic RPC calculus that allows programmers

to write succinct multi-tier programs using polymorphic location constructs and defines a type

system for the polymorphic RPC calculus and proves its type soundness. In addition, it develops

a monomorphisation translation that converts polymorphic RPC terms into monomorphic typed

RPC terms, allowing existing slicing compilation methods for client-server models to be used. The

type and semantic correctness of the monomorphisation translation are proven.

Distributed Memory Management. There are different approaches for distributed memory man-

agement for different usage scenarios. Distributed shared memory (DSM) provides the illusion of a

shared memory space across multiple nodes, making it easier for programmers to write distributed

applications as if they were writing for a shared-memory multiprocessor [Nitzberg and Lo 1991].

Distributed garbage collection used in Java RMI [Wollrath et al. 1996] as been an essential yet chal-

lenging research topic in distributed memory management. Abdullahi and Ringwood [1998] offers

a comprehensive review of distributed garbage collection (GC) schemes applicable to autonomous

systems connected by a network, particularly in the context of Internet programming languages

such as Java. It highlights the evolution of garbage collection from single-address-space collectors

to distributed systems due to the increasing prominence of languages like Java in Internet applica-

tions. Designed for the object-oriented programming language with actor model Pony [Clebsch

et al. 2017], Orca is a concurrent garbage collection algorithm which manages memory without

requiring stop-the-world pauses or synchronisation mechanisms, enabling zero-copy message pass-

ing and mutable data sharing among actors. Perhaps more relevant to our memory management

mechanism, the region system Reggio [Arvidsson et al. 2023] accompanied with a type system for

Verona [Microsoft 2019], which is a concurrent object-oriented programming language, organises

objects into isolated regions, each with its own memory management strategy. It addresses the

challenge of allowing manual memory management while maintaining memory safety by utilising
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a combination of region-based memory partitioning and an ownership type system. In this paper,

we take a different approach — we prove a concise yet safe memory management mechanism by

extending Rust’s ownership and borrow checking system into a distributed setting while abstracting

over the message passing details.

Formalisations of Rust and Their Limitations. The formalism of a core calculus of the UMI frame-

work presented in this paper is based on the formalism of a core calculus of Rust described by Pearce

[2021]. Although as mentioned in previous sections, we are not completely satisfied with this for-

malism, it is the most suitable choice comparing to all other approaches of formalising Rust’s

semantics we have surveyed. In the following paragraphs, we discuss these approaches in detail.

There are many different approaches to formalise Rust, from different perspectives and aiming for

different application domains. RustBelt [Jung et al. 2017] provide a formalised continuation-passing

style MIR — 𝜆Rust — mechanised using Iris [Jung et al. 2015]. Similarly, the formalisation presented

by Matsushita et al. [2021] is inspired by 𝜆Rust. These approaches do not provide a formal model

which is close to the source-level language of Rust. Hence, it is not convenient for us to use it as

the basis for formalising the distributed extensions of the features of the UMI framework.

Different from RustBelt, there are also attempts of formalising Rust from a source-level language

perspective. For instance, Oxide [Weiss et al. 2021] attempts to formalise near-complete source-level

Rust language features, providing a type system and small-step operational semantics. Due to the

level of the complexity and obscurity of this formalism, we find that it is rather hard for us to

gain a clear understanding of the modelling of Rust’s borrow checking and non-lexical lifetime.

In addition, without a concise and consistent presentation of the syntax, type system and formal

semantics of the core features of Rust, it is again hard for us to use such a formalism to reason

about properties of Rust programs and be convinced that the type system is indeed sound.

Back to the formalisation we choose to build our distributed language extension upon, instead

of modelling the full Rust language, Pearce [2021] formalises a core calculus of Rust, which is

FR, emphasising on the understanding of borrowing and lifetime of Rust. Although the possible

extensions of FR to include tuples and functions are discussed, this formalism does not include

essential Rust language features such as tuples, structs, functions and closures which makes it too

minimalist. Also, the way that the let-binding is modelled made it hard to do substitutions, which

is in my opinion the obstacle of having functions as a part of the formalism. In addition, its lexical

treatment of Rust’s lifetime is already obsolete.

Due to the reality of lack of a concise formalism of the source-level Rust that captures all

key concepts of Rust’s language features, our formalism of the UMI framework as a distributed

extension of Rust is also not completely satisfying. However, it does demonstrate Rust’s core

memory management mechanisms, and allows us to prove the semantic preservation property of

distributed programs implemented using the UMI framework. To have formalism of UMI capturing

more language features would require us to develop yet another formalism of source-level Rust,

which is out of the scope of this work.

6 CONCLUSION AND FURTHERWORK
In this paper, we first present our design and implementation of a UMI framework for Rust. This

UMI framework allows programmers to express distributed computation in the same form of

monolithic computation, abstracting away the internet communication complications and message

passing details. As a distributed extension of Rust, our UMI framework extends Rust’s memory

safety guarantees into a distributed setting. We then present the formalism of a core calculus

focusing on the core features relating to distributed memory management mechanisms in the UMI

framework. We present FR, which is a core calculus of the surface language of Rust, formalising
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the key concepts of Rust’s ownership and lifetime in memory management. And we extend FR into

dFR, to include distributed features of the UMI framework. By showing that distributed programs

written in dFR preserves the semantics of monolithic programs written in FR via proving the

location transparency theorem, we can conclude that the memory safety guarantees provided by

Rust can be extended to distributed programs written with our UMI framework.

In the future, we would like to conduct some quantitative evaluations for the UMI framework.

For instance, we could measure the performance overhead of distributed programs written using

the UMI framework comparing to those using TCP requests or using other libraries such as tarpc.

In addition, conducting user studies can be beneficial for assessing how straightforward the UMI

framework is to use when writing distributed programs.
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A THE PROOF FOR THE LOCATION TRANSPARENCY THEOREM
Case Copy . We assume that before the evaluation, given the distributed program state and

monolithic program state as below:

D = D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)) |D0 | = S0

We can say that, initially, the flattened distributed program state equals to the monolithic program

state:

|D| = S
Following the dFR’s reduction rule Copy (s1) and Copy (s2), the distributed execution of a remote

copy term gives:

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛, !𝓁•
@𝑛′) {

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛, 𝑣@𝑛′)
Following FR’s reduction rule Copy, the monolithic execution of the flattened remote copy term

gives:

S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), !𝓁•
@𝑛′ |@ −→ S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), 𝑣

After the evaluation, the updated distributed program state and monolithic program state are shown

as below:

D′ = D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S′ = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚))
To conclude, after the evaluation, the flattened updated distributed program state and the updated

monolithic program state are equal, and the flattened resulting value obtained from the distributed

execution and the value obtained from the monolithic execution are equal:

|D′ | = S′ 𝑣@𝑛′ |@ = 𝑣

Hence:

D,𝐶 ++ (𝑛, !𝓁•
@𝑛′) { D′,𝐶 ++ (𝑛, 𝑣@𝑛′) ∧ |D| = S

⇒
S, !𝓁•

@𝑛′ |@ −→ S′, 𝑣 ∧ |D′ | = S′ ∧ 𝑣@𝑛′ |@ = 𝑣

□

Case Move. We assume that before the evaluation, given the distributed program state and

monolithic program state as below:

D = D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)) |D0 | = S0

We can say that, initially, the flattened distributed program state equals to the monolithic program

state:

|D| = S

https://serde.rs
https://arxiv.org/abs/1903.00982
https://arxiv.org/abs/1903.00982


Panopticon: A Universal Method Invocation Library for Rust 111:23

Following the dFR’s reduction rule Move (s1) and Move (s2), the distributed execution of a remote

move term gives:

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛, #𝓁•
@𝑛′) { D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ ⊥),𝐶 ++ (𝑛, 𝑣@𝑛′)

Following FR’s reduction rule Move, the monolithic execution of the flattened remote move term

gives:

S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), #𝓁•
@𝑛′ |@ −→ S0 ⊗ (𝓁 ↦→ ⊥), 𝑣

After the evaluation, the updated distributed program state and monolithic program state are shown

as below:

D′ = D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ ⊥)) S′ = S0 ⊗ (𝓁 ↦→ ⊥)
To conclude, after the evaluation, the flattened updated distributed program state and the updated

monolithic program are equal, and the flatted resulting value obtained from the distributed execution

and the resulting value obtained from the monolithic execution are equal:

|D′ | = |D0 | ⊗ (𝓁 ↦→ ⊥) = S0 ⊗ (𝓁 ↦→ ⊥) = S′ 𝑣@𝑛′ |@ = 𝑣

Hence:

D,𝐶 ++ (𝑛, #𝓁•
@𝑛′) { D′,𝐶 ++ (𝑛, 𝑣@𝑛′) ∧ |D| = S

⇒
S, #𝓁•

@𝑛′ |@ −→ S′, 𝑣 ∧ |D′ | = S′ ∧ 𝑣@𝑛′ |@ = 𝑣

□

Before proving the case for Box, we introduce a lemma stating a relation between a fresh location

in a distributed program state D and such a location in a monolithic program state S.

Lemma A.1. Given a distributed program state D and a monolithic program state S, 𝑛 is a node in

the domain of D:

|D| = 𝑆 ∧ 𝓁 ∉ dom D(𝑛) ⇒ 𝓁 ∉ dom S

Proof. According to theorem 4.1, locations on all nodes in D are distinct. Given 𝓁 is a fresh

location in dom D(𝑛), i.e., 𝓁 ∉ dom D(𝑛), 𝓁 is also not in any other nodes in D. Hence we have:

𝓁 ∉ dom |D|
Since |D| = 𝑆 , we can conclude that:

𝓁 ∉ dom S
□

Case Box. We assume that before the evaluation, given the distributed program state D and

monolithic program state S where the flatten distributed program state equals to the monolithic

program state. In addition, we take a fresh location 𝓁:

|D| = S 𝓁 ∉ dom D(𝑛′)
Following the dFR’s reduction rule Box (s1) and Box (s2), the distributed execution of a remote

heap allocation term gives:

D,𝐶 ++ (𝑛, box@𝑛′ 𝑣) { D | (𝑛′ ↦→ D(𝑛′) ⊗ (𝓁 ↦→ (𝑣,⊤))),𝐶 ++ (𝑛, 𝓁•
@𝑛′)

By lemma A.1, we have:

𝓁 ∉ dom S



111:24 Xueying Qin

Following FR’s reduction rule Box, the monolithic execution of the flattened remote heap allocation

term gives:

S, (box@𝑛′ 𝑣) |@ −→ S ⊗ (𝓁 ↦→ (𝑣,⊤)), 𝓁•

After the evaluation, the updated distributed program state and monolithic program state are shown

as below:

D′ = D | (𝑛′ ↦→ D(𝑛′) ⊗ (𝓁 ↦→ (𝑣,⊤))) S′ = S ⊗ (𝓁 ↦→ (𝑣,⊤))
The updated distributed program state is flattened into:

|D′ | = |D| ⊗ (𝓁 ↦→ (𝑣,⊤))
Since we have |D| = S, we can conclude that the flattened updated distributed program state and

the updated monolithic program state are equal:

|D′ | = |D| ⊗ (𝓁 ↦→ (𝑣,⊤)) = S ⊗ (𝓁 ↦→ (𝑣,⊤)) = S′

Also, the flattened remote owned reference obtained from the distributed execution equals to the

owned reference obtained from the monolithic execution:

𝓁
•
@𝑛′ |@ = 𝓁

•

Hence:

D,𝐶 ++ (𝑛, box@𝑛′ 𝑣) { D′,𝐶 ++ (𝑛, 𝓁•) ∧ |D| = S
⇒

S, (box@𝑛′ 𝑣) |@ −→ S′, 𝓁• ∧ |D′ | = S′ ∧ 𝓁
•
@𝑛′ |@ = 𝓁

•

□

Before proving the case for Borrow, we introduce a lemma stating a relation between an existing

location in a distributed program state D and such a location in a monolithic program state S.

Lemma A.2. Given a distributed program state D and a monolithic program state S, 𝑛 is a node in

the domain of D:

|D| = 𝑆 ∧ 𝓁 ∈ dom D(𝑛) ⇒ 𝓁 ∈ dom S

Proof. Given 𝓁 is an existing location in dom D(𝑛), i.e., 𝓁 ∈ dom D(𝑛), we have:
𝓁 ∈ dom |D|

Since |D| = 𝑆 , we can conclude that:

𝓁 ∈ dom S
□

Case Borrow . We assume that before the evaluation, given the distributed program stateD and

monolithic program state S where the flatten distributed program state equals to the monolithic

program state, and 𝓁 is a location with an allocated value:

|D| = S 𝓁 ∈ dom D(𝑛′)
Following the dFR’s reduction rule Borrow (s1) and Borrow (s2), the distributed execution of a

remote borrow term gives:

D,𝐶 ++ (𝑛,&[mut𝓁•
@𝑛′)] { D,𝐶 ++ (𝑛, 𝓁◦

@𝑛′)
By lemma A.2, we have:

𝓁 ∈ dom S
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Following FR’s reduction rule Borrow, the monolithic execution of the flattened remote borrow

term gives:

S, (&[mut]𝓁•
@𝑛′) |@ −→ S, 𝓁◦

To conclude, after the evaluation, the distributed program state and the monolithic program state

remain unchanged, hence they are still equal. In addition, the flattened remote borrowed reference

obtained from the distributed execution equals to the borrowed reference obtained from the

monolithic execution:

𝓁
◦
@𝑛′ |@ = 𝓁

◦

Hence:

D,𝐶 ++ (𝑛,&[mut]𝓁•
@𝑛′) { D,𝐶 ++ (𝑛, 𝓁◦) ∧ |D| = S

⇒
S, (&[mut]𝓁•

@𝑛′) |@ −→ S, 𝓁◦ ∧ |D| = S ∧ 𝓁
◦
@𝑛′ |@ = 𝓁

◦

□

Case Assign Owned. We assume that before the evaluation, given the distributed program state

and monolithic program state as below:

D = D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)) |D0 | = S0

We can say that, initially, the flattened distributed program state equals to the monolithic program

state:

|D| = S
Following the dFR’s reduction rule Assign Owned (s1) and Assign Owned (s2), the distributed

execution of a remote assignment to an owned reference gives:

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛, 𝓁•
@𝑛′ := 𝑣 ′) {

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣 ′,𝑚))),𝐶 ++ (𝑛, ()@𝑛′)

Following FR’s reduction rule Assign Owned, the monolithic execution of the flattened remote

assignment to an owned reference gives:

S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), (𝓁•
@𝑛′ := 𝑣 ′) |@ −→ S0 ⊗ (𝓁 ↦→ (𝑣 ′,𝑚)), ()

After the evaluation, the updated distributed program state and monolithic program state are shown

as below:

D′ = D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣 ′,𝑚))) S′ = S0 ⊗ (𝓁 ↦→ (𝑣 ′,𝑚))
To conclude, after the evaluation, the flattened updated distributed program state and the updated

monolithic program are equal, and the flatted unit value obtained from the distributed execution

and the unit value obtained from the monolithic execution are trivially equal:

|D′ | = |D0 | ⊗ (𝓁 ↦→ (𝑣 ′,𝑚)) = S0 ⊗ (𝓁 ↦→ (𝑣 ′,𝑚)) = S′ ()@𝑛′ |@ = ()

Hence:

D,𝐶 ++ (𝑛, 𝓁•
@𝑛′ := 𝑣 ′) { D′,𝐶 ++ (𝑛, ()@𝑛′) ∧ |D| = S

⇒
S, (𝓁•

@𝑛′ := 𝑣 ′) |@ −→ S′, () ∧ |D′ | = S′ ∧ ()@𝑛′ |@ = ()

□
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Case Assign Borrowed. We assume that before the evaluation, given the distributed program

state and monolithic program state as below:

D = D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))) S = S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)) |D0 | = S0

We can say that, initially, the flattened distributed program state equals to the monolithic program

state:

|D| = S
Following the dFR’s reduction rule Assign Borrowed (s1) and Assign Borrowed (s2), the dis-

tributed execution of a remote assignment to a (mutably) borrowed reference gives:

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣,𝑚))),𝐶 ++ (𝑛, 𝓁◦
@𝑛′ := 𝑣 ′) {

D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣 ′,𝑚))),𝐶 ++ (𝑛, ()@𝑛′)

Following FR’s reduction rule Assign Borrowed, the monolithic execution of the flattened remote

assignment to a (mutably) borrowed reference gives:

S0 ⊗ (𝓁 ↦→ (𝑣,𝑚)), (𝓁◦
@𝑛′ := 𝑣 ′) |@ −→ S0 ⊗ (𝓁 ↦→ (𝑣 ′,𝑚)), ()

After the evaluation, the updated distributed program state and monolithic program state are shown

as below:

D′ = D0 ⊗ (𝑛′ ↦→ (𝓁 ↦→ (𝑣 ′,𝑚))) S′ = S0 ⊗ (𝓁 ↦→ (𝑣 ′,𝑚))
To conclude, after the evaluation, the flattened updated distributed program state and the updated

monolithic program are equal, and the flatted unit value obtained from the distributed execution

and the unit value obtained from the monolithic execution are trivially equal:

|D′ | = |D0 | ⊗ (𝓁 ↦→ (𝑣 ′,𝑚)) = S0 ⊗ (𝓁 ↦→ (𝑣 ′,𝑚)) = S′ ()@𝑛′ |@ = ()

Hence:

D,𝐶 ++ (𝑛, 𝓁◦
@𝑛′ := 𝑣 ′) { D′,𝐶 ++ (𝑛, ()@𝑛′) ∧ |D| = S

⇒
S, (𝓁◦

@𝑛′ := 𝑣 ′) |@ −→ S′, () ∧ |D′ | = S′ ∧ ()@𝑛′ |@ = ()

□

Case Decl. We assume that before the evaluation, given the distributed program state D and

monolithic program state S where the flatten distributed program state equals to the monolithic

program state. In addition, we take a fresh location 𝓁:

|D| = S 𝓁 ∉ dom D(𝑛′)

Following the dFR’s reduction rule Decl (s1) and Decl (s2), the distributed execution of a remote

declaration gives:

D,𝐶 ++ (𝑛, let mut@𝑛′ 𝑥 = 𝑣 ; 𝑡) {
D | (𝑛′ ↦→ D(𝑛′) ⊗ (𝓁 ↦→ (𝑣, 𝑘))),𝐶 ++ (𝑛, 𝑡 [𝓁•

@𝑛′/𝑥])

By lemma A.1, we have:

𝓁 ∉ dom S
Following FR’s reduction rule Decl, the monolithic execution of the flattened remote declaration

gives:

S, (let mut@𝑛′ 𝑥 = 𝑣 ; 𝑡) |@ −→ S ⊗ (𝓁 ↦→ (𝑣, 𝑘)), 𝑡 [𝓁•/𝑥]
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After the evaluation, the updated distributed program state and monolithic program state are shown

as below:

D′ = D | (𝑛′ ↦→ D(𝑛′) ⊗ (𝓁 ↦→ (𝑣, 𝑘))) S′ = S ⊗ (𝓁 ↦→ (𝑣, 𝑘))
To conclude, after the evaluation, the flattened updated distributed program state and the updated

monolithic program are equal, and the substitution with the flattened owned reference obtained

from the distributed execution and the substitution with the owned reference obtained from the

monolithic execution are trivially equal:

|D′ | = |D| ⊗ (𝓁 ↦→ (𝑣, 𝑘)) = S ⊗ (𝓁 ↦→ (𝑣, 𝑘)) = S′

𝑡 [𝓁•
@𝑛′/𝑥] |@ = 𝑡 [(𝓁•

@𝑛′) |@/𝑥] = 𝑡 [𝓁•/𝑥]
Hence:

D,𝐶 ++ (𝑛, let mut@𝑛′ 𝑥 = 𝑣 ; 𝑡) { D′,𝐶 ++ (𝑛, 𝑡 [𝓁•
@𝑛′/𝑥]) ∧ |D| = S

⇒
S, (let mut@𝑛′ 𝑥 = 𝑣 ; 𝑡) |@ −→ S′, 𝑡 [𝓁•/𝑥] ∧ |D′ | = S′ ∧ 𝑡 [𝓁•

@𝑛′/𝑥] |@ = 𝑡 [𝓁•/𝑥]
□

The proofs for location transparency of the distributed and monolithic executions of local terms

and remote terms should then be trivial.

B THE TYPE SYSTEM OF FR
Figure 10 presents the syntax of types of Pearce’s [2021] FR without any modification. A primitive

type such as the integer type int has copy semantics. A box type □𝑇 that represents a heap

allocation has move semantics. A partial type may contain undefined components. An undefined

component denoted by ⌊𝑇 ⌋ represents a currently inaccessible location as its value has already

been moved. The dFR is merely a semantics extension of FR using the same type system as FR.

B.1 Preliminaries
These are support functions presented by Pearce [2021] for defining the typing rules.

Definition B.1 (Copy Types). A type 𝑇 has copy semantics, denoted by copy(𝑇 ), when 𝑇 = int
or 𝑇 = &𝑤 .

Note that mutable references and boxes do not have copy semantics.

Partial Types 𝑇 ::= 𝑇 type

| □𝑇 partial box

| ⌊𝑇 ⌋ undefined

Types 𝑇 ::= 𝜖 unit

| int integer

| &mut 𝑤 mutable borrow

| &𝑤 immutable borrow

| □𝑇 box

Fig. 10. Syntax of Types
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Definition B.2 (Type Strengthening). For partial types 𝑇1 and 𝑇2, we say that 𝑇1 strengthes 𝑇2,

denoted by 𝑇1 ⊑ 𝑇2, according to the following rules:

𝑇1 ⊑ 𝑇1
(W-Reflex)

𝑇1 ⊑ 𝑇2

□𝑇1 ⊑ □𝑇2
(W-Box)

𝑢 ⊑ 𝑤

Γ ⊢ &[mut] 𝑢 ⊑ &[mut]𝑤
(W-Bor)

𝑇1 ⊑ 𝑇2

⌊𝑇1⌋ ⊑ ⌊𝑇2⌋
(W-UndefA)

𝑇1 ⊑ 𝑇2

𝑇1 ⊑ ⌊𝑇2⌋
(W-UndefB)

𝑇1 ⊑ ⌊𝑇2⌋
□𝑇1 ⊑ □⌊𝑇2⌋

(W-UndefC)

Note that the rule W-Bor requires the mutability to be the same on both sides.

Definition B.3 (Type Join). The join of partial types𝑇1 and𝑇2, denoted𝑇1⊔𝑇2, is a partial function
returning the strongest 𝑇3 such that 𝑇1 ⊑ 𝑇3 and 𝑇2 ⊑ 𝑇3.

Definition B.4 (Environment Strengthening). Let Γ1 and Γ2 be typing environments. We say

that Γ1 strengthens Γ2, denoted Γ1 ⊑ Γ2, if and only if dom(Γ1) = dom(Γ2) and for all 𝑥 ∈ dom(Γ1)
where Γ1 (𝑥) = ⟨𝑇1⟩𝑙 , we have Γ2 (𝑥) = ⟨𝑇2⟩𝑙 where 𝑇1 ⊑ 𝑇2.

Definition B.5 (Environment Join). The join of environments Γ1 and Γ2, denoted Γ1 ⊔ Γ2, is a
partial function returning the strongest Γ3 such that Γ1 ⊑ Γ3 and Γ2 ⊑ Γ3.

Definition B.6 (LVal Typing). An lval 𝑤 is said to be typed with respect to an environment Γ,
denoted Γ ⊢ 𝑤 : ⟨𝑇 ⟩, according to the following rules:

Γ(𝑥) = ⟨𝑇 ⟩𝑚

Γ ⊢ 𝑥 : ⟨𝑇 ⟩𝑚
(T-LvVar)

Γ ⊢ 𝑤 : ⟨□𝑇 ⟩𝑚

Γ ⊢ ∗𝑤 : ⟨𝑇 ⟩𝑚
(T-LvBox)

Γ ⊢ 𝑤 : ⟨&[mut]𝑢⟩𝑛 Γ ⊢ 𝑢 : ⟨𝑇 ⟩𝑚

Γ ⊢ ∗𝑤 : ⟨
⊔

𝑖
𝑇𝑖⟩

.
𝑖 𝑚𝑖

(T-LvBor)

Definition B.7 (Path). A path 𝜋 is a sequence of zero or more path selectors 𝜌 , which is either

empty (𝜋 ≜ 𝜖) or composed by appending a selector onto another path (𝜋 ≜ 𝜋 ′ · 𝜌).

Definition B.8 (Path Selector). A path selector 𝜌 is always a dereference (𝜌 ≜ ∗).

Definition B.9 (Path Conflict). Let 𝑢 ≜ 𝜋𝑢 | 𝑥 and 𝑤 ≜ 𝜋𝑤 | 𝑦 be lvals. Then 𝑤 is said to

conflict with 𝑢, denoted 𝑢 ⊲⊳ 𝑤 , if 𝑥 = 𝑦.

Note that 𝑢 ≜ 𝜋 | 𝑥 denotes destructuring of an lval 𝑢 into its base 𝑥 and path 𝜋 .

Definition B.10 (Type Containment). Let Γ be an environment where Γ(𝑥) = ⟨𝑇 ⟩𝑙 for some l.

Then Γ ⊢ 𝑥 { 𝑇𝑦 denotes that variable 𝑥 contains type𝑇𝑦 and is defined as contains(Γ,𝑇 ,𝑇𝑦) where:

contains(Γ,𝑇 ,𝑇𝑦) =


contains(Γ,□𝑇 ′,𝑇𝑦) if 𝑇 = □𝑇 ′,

true if 𝑇 = 𝑇𝑦,

false otherwise

Definition B.11 (Read Prohibited). In an environment Γ, an lval𝑤 is said to be read prohibited,

denoted readProhibited(Γ,𝑤), when some 𝑥 exists where Γ ⊢ 𝑥 { &mut 𝑢 and ∃𝑖 (𝑢𝑖 ⊲⊳ 𝑤).

Definition B.12 (Write Prohibited). In an environment Γ, an lval𝑤 is said to be write prohibited,

denoted writeProhibited(Γ,𝑤), when either some 𝑥 exists where Γ ⊢ 𝑥 { &𝑢 ∧ ∃𝑖 (𝑢𝑖 ⊲⊳ 𝑤) or
readProhibited(Γ,𝑤) holds.
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The partial function move(Γ,𝑤 ) determines the environment after the value of an lval𝑤 is moved

out:

Definition B.13 (Move). Let Γ be an environment where Γ(𝑥) = ⟨𝑇1⟩𝑙 for some lifetime 𝑙 , and

𝑤 an lval where 𝑤 ≜ 𝜋𝑥 | 𝑥 . Then move(Γ,𝑤) is a partial function defined as Γ [𝑥 ↦→ ⟨𝑇2⟩𝑙 ] where
𝑇2 = strike(𝜋𝑥 | 𝑇1):

strike(𝜖 | 𝑇 ) = [𝑇 ]
strike((𝜋 · ∗) | □𝑇1) = □𝑇2 where 𝑇2 = strike(𝜋 | 𝑇1)

Definition B.14 (Mutable). Let Γ be an environment where Γ(𝑥) = ⟨𝑇 ⟩𝑙 for some lifetime 1, and

𝑤 an lval where𝑤 ≜ 𝜋𝑥 | 𝑥 . Then mut(Γ,𝑤) is a partial function defined as mutable(Γ, 𝜋𝑥 | 𝑇 ) that
determines whether𝑤 is mutable:

mutable(Γ, 𝜖 | 𝑇 ) = true

mutable(Γ, (𝜋 · ∗) | □𝑇 ) = mutable(Γ, 𝜋 | 𝑇 )

mutable(Γ, (𝜋 · ∗) | &mut 𝑤) =
∧

𝑖
mut(Γ, 𝜋 ·𝑤𝑖 )

Definition B.15 (Environment Drop). The environment drop deallocates locations by removing

them from an environment Γ: drop(Γ,𝑚) = Γ − {𝑥 ↦→ ⟨𝑇 ⟩𝑚 | 𝑥 ↦→ ⟨𝑇 ⟩𝑚 ∈ Γ}.

Definition B.16 (Well-formed Type). For an environment Γ, a type 𝑇 is said to be well-formed

with respect to a lifetime 𝑙 , denoted Γ ⊢ 𝑇 ⪰ 𝑙 , according to rules:

Γ ⊢ int ⪰ 𝑙
(L-Int)

Γ ⊢ 𝑢 : ⟨𝑇 ⟩𝑚 𝑚 ⪰ 𝑙

Γ ⊢ &[mut] 𝑢 ⪰ 𝑙
(L-Borrow)

Γ ⊢ 𝑇 ⪰ 𝑙

Γ ⊢ □𝑇 ⪰ 𝑙
(L-Box)

Definition B.17 (Compatible Shape). For an environment Γ, two partial types 𝑇1 and 𝑇2 are
shape compatible, denoted as Γ ⊢ 𝑇1 ≈ 𝑇2, according to the following rules:

Γ ⊢ int ≈ int
(S-Int)

Γ ⊢ 𝑇1 ≈ 𝑇2

Γ ⊢ □𝑇1 ≈ □𝑇2
(S-Box)

∀𝑖, 𝑗 (Γ ⊢ 𝑢𝑖 : 𝑇1 ≈ 𝑇2 : 𝑤 𝑗 ⊣ Γ)
Γ ⊢ &[mut] 𝑢 ≈ &[mut]𝑤

(S-Bor)

Γ ⊢ 𝑇1 ≈ 𝑇2

Γ ⊢ ⌊𝑇1⌋ ≈ 𝑇2
(S-UndefL)

Γ ⊢ 𝑇1 ≈ 𝑇2

Γ ⊢ 𝑇1 ≈ ⌊𝑇2⌋
(S-UndefR)

Definition B.18 (Write). Let Γ be an environment where Γ(𝑥) = ⟨𝑇1⟩𝑙 for some lifetime 𝑙 and

lval w where𝑤 ≜ 𝜋𝑥 | 𝑥 . Then, write𝑘 (Γ,𝑤,𝑇 ) is a partial function defined as Γ2 [𝑥 ↦→ ⟨𝑇2⟩𝑙 ] for some

rank 𝑘 ≥ 0 where (Γ2,𝑇2) = update𝑘 (Γ, 𝜋𝑥 | 𝑇1,𝑇 ):

update0 (Γ, 𝜖 | 𝑇1,𝑇2) = (Γ,𝑇2)
update𝑘≥1 (Γ, 𝜖 | 𝑇1,𝑇2) = (Γ,𝑇1 ⊔𝑇2)

update𝑘 (Γ1, (𝜋 · ∗) | □𝑇1,𝑇 ) = (Γ2,□𝑇2) where (Γ2,𝑇2) = update𝑘 (Γ1, 𝜋 | 𝑇1,𝑇 )

update𝑘 (Γ, (𝜋 · ∗) | &mut 𝑢𝑖 ,𝑇 ) = (
⊔

𝑖
Γ𝑖 ,&mut 𝑢𝑖 ) where Γ𝑖 = write𝑘+1 (Γ, 𝜋 | 𝑢𝑖 ,𝑇 )
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𝜎 ⊢ 𝑣 : 𝑇

Γ ⊢ ⟨𝑣 : 𝑇 ⟩𝑙𝜎 ⊣ Γ
(T-Const)

Γ1 ⊢ ⟨𝑡 : 𝑇 ⟩𝑙𝜎 ⊣ Γ2

Γ1 ⊢ ⟨box 𝑡 : □𝑇 ⟩𝑙𝜎 ⊣ Γ2
(T-Box)

Γ ⊢ 𝑤 : ⟨𝑇 ⟩𝑚 copy(𝑇 ) ¬readProhibited(Γ,𝑤)
Γ ⊢ ⟨!𝑤 : 𝑇 ⟩𝑙𝜎 ⊣ Γ

(T-Copy)

Γ ⊢ 𝑤 : ⟨𝑇 ⟩𝑚 ¬writeProhibited(Γ1,𝑤) Γ2 = move(Γ1,𝑤)
Γ1 ⊢ ⟨#𝑤 : 𝑇 ⟩𝑙𝜎 ⊣ Γ2

(T-Move)

Γ ⊢ 𝑤 : ⟨𝑇 ⟩𝑚 mut(Γ,𝑤) ¬writeProhibited(Γ,𝑤)
Γ ⊢ ⟨&mut 𝑤 : &mut 𝑤⟩𝑙𝜎 ⊣ Γ

(T-MutBorrow)

Γ ⊢ 𝑤 : ⟨𝑇 ⟩𝑚 ¬readProhibited(Γ,𝑤)
Γ ⊢ ⟨&𝑤 : &𝑤⟩𝑙𝜎 ⊣ Γ

(T-ImmBorrow)

Γ1 ⊢ ⟨𝑡1 : 𝑇1⟩𝑙𝜎 ⊣ Γ2 . . . Γ𝑛 ⊢ ⟨𝑡𝑛 : 𝑇𝑛⟩𝑙𝜎 ⊣ Γ𝑛+1

Γ1 ⊢ ⟨𝑡 : 𝑇𝑛⟩𝑙𝜎 ⊣ Γ𝑛+1
(T-Seq)

Γ1 ⊢ ⟨𝑡 : 𝑇 ⟩𝑚𝜎 ⊣ Γ2 Γ2 ⊢ 𝑇 ⪰ 𝑙 Γ3 = drop(Γ2,𝑚)
Γ1 ⊢ ⟨{𝑡} : 𝑇 ⟩𝑙𝜎 ⊣ Γ3

(T-Block)

𝑥 ∉ dom(Γ1) Γ1 ⊢ ⟨𝑡1 : 𝑇 ⟩𝑙𝜎 ⊣ Γ2 Γ3 = Γ2 [𝑥 ↦→ ⟨𝑇 ⟩𝑙 ] Γ3 ⊢ 𝑡2 : 𝑇 ′ ⊣ Γ3

Γ1 ⊢ ⟨let mut 𝑥 = 𝑡1; 𝑡2 : 𝑇
′⟩𝑙𝜎 ⊣ Γ3

(T-Declare)

Γ1 ⊢ 𝑤 : ⟨𝑇1⟩𝑚 Γ1 ⊢ ⟨𝑡 : 𝑇2⟩𝑙𝜎 ⊣ Γ2 Γ2 ⊢ 𝑇1 ≈ 𝑇2
Γ2 ⊢ 𝑇2 ⪰ 𝑚 Γ3 = write0 (Γ2,𝑤,𝑇2) ¬writeProhibited(Γ3,𝑤)

Γ1 ⊢ ⟨𝑤 = 𝑡 : 𝜖⟩𝑙𝜎 ⊣ Γ3
(T-Assign)

Fig. 11. Typing Rules for FR

B.2 Typing Rules
Utilising the helper functions defined in perious section, FR’s typing rules are shown in figure 11.

Note that we do not make any major modification to these typing rules. The only minor changes

are: 1) The syntax of the lifetime of a block is now implicit; and 2) Since the syntax of declaration

is changed from the original form let mut 𝑥 = 𝑡 to let mut 𝑥 = 𝑡1; 𝑡2 to allow substitutions, the

typing rule is slightly modified accordingly.
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