
Primrose: Selecting Container Data Types by Their Properties

Xueying Qina, Liam O’Connora, and Michel Steuwera
a The University of Edinburgh, Scotland, United Kingdom

Abstract
Context Container data types are ubiquitous in computer programming, enabling developers to efficiently
store and process collections of data with an easy-to-use programming interface. Many programming languages
offer a variety of container implementations in their standard libraries based on data structures offering
different capabilities and performance characteristics.
Inquiry Choosing the best container for an application is not always straightforward, as performance charac-
teristics can change drastically in different scenarios, and as real-world performance is not always correlated
to theoretical complexity.
Approach We present Primrose, a language-agnostic tool for selecting the best performing valid container
implementation from a set of container data types that satisfy properties given by application developers.
Primrose automatically selects the set of valid container implementations for which the library specifications,
written by the developers of container libraries, satisfies the specified properties. Finally, Primrose ranks the
valid library implementations based on their runtime performance.
Knowledge With Primrose, application developers can specify the expected behaviour of a container as a type
refinement with semantic properties, e.g., if the container should only contain unique values (such as a set)
or should satisfy the LIFO property of a stack. Semantic properties nicely complement syntactic properties
(i.e., traits, interfaces, or type classes), together allowing developers to specify a container’s programming
interface and behaviour without committing to a concrete implementation.
Grounding We present our prototype implementation of Primrose that preprocesses annotated Rust code,
selects valid container implementations and ranks them on their performance. The design of Primrose is,
however, language-agnostic, and is easy to integrate into other programming languages that support con-
tainer data types and traits, interfaces, or type classes. Our implementation encodes properties and library
specifications into verification conditions in Rosette, an interface for SMT solvers, which determines the set
of valid container implementations. We evaluate Primrose by specifying several container implementations,
and measuring the time taken to select valid implementations for various combinations of properties with the
solver. We automatically validate that container implementations conform to their library specifications via
property-based testing.
Importance This work provides a novel approach to bring abstract modelling and specification of container
types directly into the programmer’s workflow. Instead of selecting concrete container implementations,
application programmers can now work on the level of specification, merely stating the behaviours they require
from their container types, and the best implementation can be selected automatically.

ACM CCS 2012
Software and its engineering → Functionality; Software functional properties;
Theory of computation → Program specifications;

Keywords Container Data Types, Properties, Data Abstraction, Performance

The Art, Science, and Engineering of Programming

Submitted December 29, 2022

Published February 15, 2023

doi 10.22152/programming-journal.org/2023/7/11
© Xueying Qin, Liam O’Connor, and Michel Steuwer
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 7, no. 3, 2023, article 11; 28 pages.

��������

Th
e A

rt,
 Sc

ien
ce,

 and Engineering of Program
m

ing

Artifact Evaluation

https://doi.org/10.22152/programming-journal.org/2023/7/11
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://doi.org/10.5281/zenodo.7419588

Primrose: Selecting Container Data Types by Their Properties

1 Introduction

Container data types, such as sets, lists, and trees, represent collections of data
ubiquitous in everyday programming [11]. Virtually all programming languages
provide a variety of different container implementations in their standard libraries.

Much work has been done to design better abstractions, improve performance and
verify correctness for container data types. However, a crucial problem for applica-
tion developers using containers still exists: when choosing a container data type,
application developers are forced to select a concrete implementation that comes with
certain theoretical complexity and practical performance tradeoffs.
For example, consider representing a mathematical set, i.e., where each element

should occur at most once. In C++, we must choose between std::set, usually imple-
mented as red-black trees [4], and std::unordered_set, implemented as a hash table.
The hash-based implementation was added to the C++ standard in 2011, as the C++
standard has strict complexity requirements preventing the ordinary std::set to be
implemented as the (often faster) hash table. Many blog posts and discussions [1, 3, 7,
25, 38] report on the performance of various C++ containers, showing the community’s
interest and the need for external guidance that the language itself does not provide.

In other languages, the situation is similar. Rust provides two container implementa-
tions, HashSet and BTreeSet, expecting application developers to make an explicit choice
between them. Scala’s complex collection library features abstract interfaces, such as
the Set trait, abstracting over many implementations such as HashSet and TreeSet. But
when creating an instance of Set, a default HashSet implementation is chosen regardless
of the suitability of this implementation choice for the usage pattern of the application.

These examples demonstrate a general problem: Application developers are forced
to overspecify, by having to select a concrete implementation, where we generally
would like application developers to be shielded from low-level implementation
details. Application developers should primarily care about the abstract behaviour
of the containers in their application, and not how this is achieved. The compiler,
or a dedicated tool, should identify those containers that satisfy their functional
requirements, and select the best implementation automatically.

In this paper, we propose such an automated tool: Primrose, which allows application
developers to specify the expected behaviours and programming interfaces of con-
tainers as properties. Syntactic properties specify the required programming interface
of the container and are expressed as traits of the underlying programming language.
Semantic properties specify the expected behaviour of the container and are written as
logical predicates used as refinements of the container type. Primrose automatically
selects the set of valid implementations for which the library specifications, written by
the library developers as pre- and post-conditions of the container operations, satisfy
the specified syntactic and semantic properties using an SMT solver. Finally, Primrose
ranks the valid library implementations based on their runtime performance.

To select the best container implementation, first those container implementations
which meet the functional requirements of the application developer must be deter-
mined, and then those valid container implementations must be evaluated based on
non-functional requirements. While Primrose does include functionality for ranking

11:2

Xueying Qin, Liam O’Connor, and Michel Steuwer

based on benchmarks, the focus of this paper is on the first of these two problems.
There are many existing sophisticated techniques for selecting based on non-functional
requirements, and they are highly complementary with Primrose.

In this work, we apply verification and formal methods techniques, including refine-
ment types, formal library specifications, and SMT solvers, in an innovative way to
raise the level of abstraction for developers, freeing them from the burden of choosing
container implementations, and opening up the possibility to automatically improve
the performance of applications.
To summarize, this paper makes the following contributions:

We present Primrose (Section 3), a language-agnostic tool for selecting valid con-
tainer implementations (Section 6) based on properties (Section 4) describing their
behaviours and programming interfaces and ranking them based on performance.
We show a new application of refinement types (Section 4) not—as previous work
did—for verification purposes, but to raise the level of abstraction for developers
and to improve the runtime performance of applications with container data types.
We develop a new methodology to specify container libraries (Section 5), amenable
to our selection process, making use of existing formal methods work such as data
abstraction and Hoare logic.
We show the feasibility of Primrose, selecting container implementations that
satisfy various properties from a Rust library of eight container types with library
specifications. We validate container implementations against specifications and
evaluate the efficiency of the selection process (Section 7).

2 Motivation

Suppose as part of a larger application we want to find and store all the elements of
a larger collection, but without duplicates. We might, for example, use the result of
this function to count the number of unique elements or process the elements further,
now with the guarantee that each element in the returned collection is unique.
An easy way to implement this is to return a container that only permits unique

elements. We might think of a set, but as discussed in Section 1, this requires a choice:
Which implementation of the abstract idea of a mathematical set should we use?

Figure 1a shows a Rust code snippet computing a container uniqueElements that
contains the unique elements of the original input sequence. The application developer
must choose a concrete container implementation, such as HashSet in line 1, but other
valid choices would be Rust’s BTreeSet (line 2), or perhaps a custom UniqueVect (line 3)
container, which stores all elements in a vector but ensures there are no duplicates,
or some other FancySetImplementations (line 4). Whether a container implementation
is valid is determined by the application developer’s functional requirements. Our
uniqueness requirement, for example, is not met by the Rust HashMultiSet (line 5).

Many programming techniques exist to abstract over multiple concrete implementa-
tions of a general concept. In object-oriented languages, abstract classes enable hiding
multiple implementations behind a common interface. Similar features exist in other

11:3

Primrose: Selecting Container Data Types by Their Properties

1 type Set<I> = HashSet<I>;
2 // type Set<I> = BTreeSet<I>;
3 // type Set<I> = UniqueVect<I>;
4 // type Set<I> = FancySetImpl<I>;
5 // type Set<I> = HashMultiSet<I>; ???
6
7 let mut uniqueElements = Set::new();
8 for val in input.iter() {
9 uniqueElements.insert(val); }

Rust

(a) In Rust, application developers must choose a
concrete container implementation with poten-
tially surprising performance implications.

1 property unique {
2 \c −> (for−all−elems (\a −>
3 (unique−count? a c)) c) };
4 type UniqueCon<I> = {
5 c <: ContainerT | unique c };
6
7 let mut uniqueElements = UniqueCon::new();
8 for val in input.iter() {
9 uniqueElements.insert(val); }

Primrose

Rust

(b) Using Primrose, developers describe the con-
tainer’s expected behaviour via properties and
the best valid implementation is selected.

Figure 1 Selecting the unique elements of a sequence by inserting the elements into a set.

languages under different names, such as, traits (e.g., in Rust and Scala), protocols
(e.g., in Swift), interfaces (e.g., in Java), and type classes (e.g., in Haskell). All these
techniques allow developers to use multiple concrete implementations, such as HashSet
and BTreeSet, with a single abstract type, which we might call Set. However, these types
are deliberately abstract, meaning that we cannot instantiate them directly: When
creating such a type, a developer must commit to a specific concrete implementation,
requiring the developer to look underneath layers of abstraction to make an informed
decision. Thus, these abstraction techniques do not free developers from considering
low level details and they are not powerful enough to express semantic requirements:
developer cannot specify their functional requirements directly, but merely provide a
common syntax enabling the use of multiple implementations. With such an abstract
container type Set, we cannot express that each concrete implementation is required
to contain no duplicate elements. Similarly, with an abstract type Stack, we cannot
state that the last-in-first-out property is respected by the push and pop operations.
Figure 1b shows the same problem of selecting unique elements, but expressed

using Primrose. Application developers specify their functional requirements—in this
case, that the container must contain unique elements—as a semantic property. This
semantic property is expressed in lines 1–3 in the Primrose specification language
as a logical predicate written as a lambda expression. The property is used to refine
the container data type in lines 4 and 5. Refinement types have long been used
as a technique for program verification—including container types [36]. Here, we
use refinement types in a new way, allowing programmers to express the expected
behaviour of a container, and freeing them from having to make a (potentially difficult)
implementation choice. The remaining code remains unchanged: we can simply use
the refined type in line 7. Primrose preprocesses the code from Figure 1b, identifies
all valid container implementations from a library of containers, and generates a
program equivalent to Figure 1a with the best container implementation inserted
automatically.

But which is the best container implementation? This depends on the non-functional
requirements of the application: Often developers care about fast runtime performance,

11:4

Xueying Qin, Liam O’Connor, and Michel Steuwer

0 200 400
0

50

100

Data size (MB)

Ti
m
e
(s
)

BTreeSet
HashSet
UniqueVec

0 200 400
0

1000

2000

3000

Data size (MB)

H
ea
p
al
lo
ca
tio

ns
(M

B) BTreeSet
HashSet
UniqueVec

Figure 2 Runtime performance (left) and memory consumption (right) of three container
implementations for storing unique elements of an input sequence from Figure 1a.
The custom UniqueVec implementation ensures elements to be unique lazily on
access. It is the fastest implementation, outperforming HashSet and BTreeSet from
the Rust standard library, while consuming less memory than HashSet.

also, for example, an application might require a low memory footprint. Figure 2
shows the performance and memory consumption for three different implementation
choices. Perhaps surprisingly, a custom UniqueVec implementation that uses a vector and
lazily ensures that the stored elements are unique, by sorting the vector and removing
duplicates on access, outperforms the Rust built-in containers HashSet and BTreeSet.
In addition, it is also the best choice for machines with limited memory. Choosing
the best container implementation is not always straightforward, particularly as
theoretical complexity of operations can sometimes be misleading in the presence of
practical effects such as cache-friendliness. Primrose selects implementations satisfying
developers’ functional requirements and opens up opportunities to automatically
choose the most desired implementation according to non-functional requirements.

3 Overview

Figure 3 gives an overview of the design of the Primrose selection tool. Using Primrose,
the application developer writes code in terms of an abstract type, and a property
specification describing the syntactic and semantic properties they expect this type to
satisfy. The syntactic properties take the form of traits and the semantic properties
take the form of type refinements. To write a program, the developer only specifies
what functional properties must be satisfied by the required container, and does not
have to commit to a particular implementation. In Figure 3, the developer specifies
that they require a container (the syntactic property ContainerT) where all elements are
unique (the semantic property unique). We discuss properties in detail in Section 4.

Given this code as input, Primrose will, acting as a preprocessor, generate copies of
the input code where the abstract type is instantiated into a valid concrete implemen-
tation that satisfies the expected properties. It determines which implementations are
valid by consulting library specifications, which are provided by library developers.
These specifications abstract over concrete container implementations and provide
a summary of their externally observable semantics. For each implementation, the

11:5

Primrose: Selecting Container Data Types by Their Properties

Figure 3 The workflow of Primrose: Property specifications (top left), written and used by
the application developer, are used to check which library specifications (top right),
written by library developers, satisfy them. Valid implementations (marked with
a green check marks), are then ranked by their performance (bottom).

library specification contains the pre- and post-conditions of each operation in terms
of an abstract list model. We discuss these specifications in more detail in Section 5.

In our example in Figure 3, the library specification of the Vec<T> type indicates that
it is not a suitable choice for UniqueCon<T>, as it does not satisfy the required semantic
property unique. We use a satisfiability modulo theories (SMT) solver for the selection
process, which we discuss in Section 6.

Figure 3 shows at the bottom a simplified version of the generated programs. In our
implementation, we ensure that only the container operations that the application
developer specifies with syntactic properties are accessible in the generated program.
Our current prototype of Primrose focuses on ensuring the functional correctness of
selecting container implementations based on desired properties. Nevertheless, we
have implemented a simple process that ranks valid implementations by their runtime
performance. Rankings by other non-functional metrics could easily be added to our
design. We provide discussion about code generation and ranking in Section 6.4.

Using Rosette as the Common Language for Specifications and Selection The “solver-
aided programming language” Rosette [34, 35] is used as the common language in
Primrose for the formal parts. Rosette is chosen for Primrose due to its convenient
interface to the Z3 SMT solver and the straightforward translation from Primrose
property specifications into Rosette. Property specifications are used as verification
conditions when selecting implementations by checking against library specifications
which are directly encoded in Rosette. The selection process is done by interacting
with the SMT solver via Rosette.

11:6

Xueying Qin, Liam O’Connor, and Michel Steuwer

Portability of Primrose Currently, we choose Rust as the target language to implement
our idea. Application developers write the property specifications as a part of their Rust
programs and Primrose generates Rust code after processing specifications. However,
Primrose could easily be ported to many other languages, since property specifications,
library specifications, and the process of selecting implementations are all language-
agnostic and not attached to Rust’s particular type system or language features.
Adapting property specifications into other languages only requires such languages to
have a construct similar to Rust’s traits, such as traits in Scala and interfaces in Java,
allowing us to model syntactic properties. It would be straightforward to add new
backends to Primrose to generate code in these languages. Our library specifications
are, by design, an abstraction over implementation details, describing the intended
semantics of container operations without respect to their implementation. This means
we can trivially adapt these specifications to container libraries from other languages,
so long as our specifications remain an abstraction of the new implementations. Thus,
we anticipate that Primrose could easily be adapted to produce code in any language
with sufficient support for data abstraction, such as Java, Scala, Swift, or C++.

4 Property Specifications

The application developer specifies the desired behaviours of their required container
with a property specification, for example, for the type UniqueCon from Figure 3:

1 Primroseproperty unique { \c −> (for−all−elems (\a −> (unique−count? a c)) c) }
2 type UniqueCon<T> = {c <: (ContainerT) | (unique c)}

We first define the semantic property unique using a predicate. In our specification
language, such predicates have type Con⟨𝜏⟩ → Bool, where Con⟨𝜏⟩ is a placeholder
that is resolved into a concrete container type by the selection process. The combinator
for−all−elems is part of a library enabling to write predicates for individual container
elements. The predicate unique−count? holds iff the given element occurs exactly once
in the container. These combinators and predicates are explained in Section 4.2.
With the defined semantic property unique, we can then declare the container type

UniqueCon<T>. The first part of the declaration specifies the syntactic property that
must be satisfied by the container type, in the form of the trait ContainerT. Specifically,
c <: (ContainerT) says that the type of the container c must implement the trait ContainerT,
which specifies a set of basic container operations. The second part of the declaration
refines our container type by the predicate unique, stating that the property must be
invariant across all container operations. Properties may also be composed. For multi-
ple syntactic properties, we specify a list of traits (c <: (T1, T2)) that the container type
implements. For multiple semantic properties, we use conjunction, i.e. ((p1 c) and (p2 c)).

Figure 4 shows the syntax of the Primrose property specification language. Formally,
the specification language is a variant of the polymorphic 𝜆-calculus [15, 27], with
restrictions on the use of polymorphism to enable implicit type inference [17, 24].
This type system guarantees termination, making specifications easier to analyse and
straightforward to translate into SMT verification conditions in Rosette. The transla-
tion into Rosette is straightforward, as terms in the Primrose property specification

11:7

Primrose: Selecting Container Data Types by Their Properties

language (literals, variables, lambdas, and function application) are translated into
their counterparts in the functional Rosette language.

4.1 Syntactic Properties as Traits

In our Primrose prototype, we encode syntactic properties as Rust traits, specifying
the operations needed by the application developer to interact with a container. Traits
are defined in Rust and lifted into our property specification language. For instance,
the trait ContainerT introduced above is implemented as:

1 Rustpub trait ContainerT<T> {
2 fn len(&self) −> usize;
3 fn contains(&self, x: &T) −> bool;
4 fn is_empty(&self) −> bool;
5 fn insert(&mut self, elt: T);
6 fn clear(&mut self);
7 fn remove(&mut self, elt: T) −> Option<T>;
8 }

By writing c <: ContainerT, the application developer indicates that they expect the
container type selected by Primrose to include implementations for all operations in
the trait ContainerT. Thus, after executing Primrose, UniqueCon<T> will be resolved into a
concrete container type that implements the trait ContainerT.

As mentioned, we can also declare a container type that satisfies multiple syntactic
properties. For instance, suppose that in addition to ContainerT, we would like our
container to also satisfy the syntactic property IndexableT:

1 Rustpub trait IndexableT<T> {
2 fn first(&self) −> Option<&T>;
3 fn last(&self) −> Option<&T>;
4 fn nth(&self, n: usize) −> Option<&T>;
5 }

With just ContainerT, there is no way to observe the ordering of elements in the
container, but with IndexableT there is, as we can now select elements based on their
position. By composing our new syntactic property IndexableT with ContainerT we can
now specify a container of unique elements where the order can be observed:

1 Primrosetype UniqueIndexableCon<T> = {c <: (ContainerT, IndexableT) | (unique c)}

Literals 𝑙 := true | false
Terms 𝑡 := 𝑙 | 𝑥 | 𝜆𝑥. 𝑡 | 𝑡 𝑡

Refinement 𝑟 := 𝑡 | 𝑟 ∧ 𝑟

Container Type Declarations 𝑐 := {𝑣 <: 𝐵 | 𝑟}
Simple Types 𝜎 := Bool | 𝑇 | Con⟨𝜎⟩

Types 𝜏 := 𝜎 | 𝜏 → 𝜏 | ∀𝑇 <: 𝐵. 𝜏
Bounds 𝐵 := trait_name | 𝐵 , 𝐵

Figure 4 The syntax of property specifications. 𝑇 is the type variable, ranging over element
types of the target language, which is Rust in this case.

11:8

Xueying Qin, Liam O’Connor, and Michel Steuwer

Semantic properties, such as unique, must be invariant across all operations from all
syntactic properties required of the container.

4.2 Semantic Properties as Predicates

As mentioned, semantic properties are predicates that are used to construct refine-
ments for container types; each declared container type in the form {𝑣 <: 𝐵 | 𝑟} is a
refinement type, i.e. a type circumscribed by a logical predicate [13]. When the predi-
cates are in SMT-decidable logic, they can be statically checked [5]. Such techniques
are used in programming languages like Liquid Haskell and F*, where they are used
to facilitate verification of program correctness. For instance, in Liquid Haskell, we
may define a refinement type UniqueList representing a list of unique elements as:

1 Liquid Haskell{−@ measure unique @−}
2 unique :: (Ord a) => [a] −> Bool
3 unique [] = True
4 unique (x:xs) = unique xs && not (S.member x (elts xs))
5 {−@ type UniqueList a = {v:[a] | unique v} @−}

While our syntax for type refinements strongly resembles Liquid Haskell, our refine-
ment types are slightly different, and serve a different purpose. Firstly, Liquid Haskell’s
refinements are attached to a concrete type, in this case a list (written [a]), whereas
our refinements are attached to an abstract container type, which is then resolved by
Primrose into a concrete implementation. Secondly, Liquid Haskell uses type refine-
ments for the purpose of correctness: If a list is declared to have type UniqueList, the
Liquid Haskell verifier will check that it satisfies the predicate unique. For example, it
will report an error at compile time if given a list that contains duplicates.

1 Liquid Haskell{−@ notUniqueList :: UniqueList Int @−}
2 notUniqueList::[Int]
3 notUniqueList = [3, 1, 2, 3]

Our work instead uses type refinements to specify the semantic requirements of the
application developer to guide selection of valid concrete implementations. Once all
valid implementations have been found, Primrose simply selects the implementation
providing the best performance for the application developer. In short, rather than to
aid verification, we use refinement types to help application developers optimise their
programs. We give more details on the selection process in Section 6.

Combinators and Predicate Functions Demonstrated by our examples, Primrose pro-
vides a set of combinators and predicate functions to facilitate writing of property
specifications. These combinators and predicate functions are defined in Rosette and
then imported into our property specification language. In the semantic property
unique, the combinator for−all−elems is used to specify that the predicate unique−count?
must hold for all elements inside the container. The type of the combinator for−all−elems
is Con⟨𝜏⟩ → (𝜏 → Bool) → Bool, meaning this combinator takes in two arguments,
the first of which is a container and the second of which is a predicate on the elements
of that container, and eventually returns a boolean value.

11:9

Primrose: Selecting Container Data Types by Their Properties

For the purposes of checking, we represent containers Con⟨𝜏⟩ abstractly in Rosette
as lists. We discuss this list abstraction and justify it in Section 5. This means that we
can implement our for−all−elems combinator straightforwardly with a list fold operation:

1 Rosette(define (for−all−elems c fn)
2 (foldl elem−and #t (map (lambda (a) (fn a)) c)))

We also provide some combinators for applying relations between elements in a
container. For instance, for-all-consecutive-pairs:

for-all-consecutive-pairs : Con⟨𝜏⟩ → (𝜏 → 𝜏 → Bool) → Bool (1)

Unlike for−all−elems, this combinator is given a binary relation between elements, and
checks that this relation holds between any two consecutive elements in our container.

With this combinator and the predicates geq? and leq?, we can define properties like
ascending and descending, which specify particular orderings of elements in a container:

1 Primroseproperty ascending { \c −> (for−all−consecutive−pairs c leq?) }
2 property descending { \c −> (for−all−consecutive−pairs c geq?) }

Besides the set of combinators and predicate functions predefined in Primrose,
application developers may also provide customised functions by providing Rosette
definitions and importing them into our property specification language.

Composition of semantic properties As shown in Figure 4, we can compose semantic
properties in a container type declaration with conjunction. For instance, to declare
a container type with elements arranged in strictly ascending order, i.e., both unique
and ascending properties must hold, we can write the following:

1 Primrosetype StrictlyAscendingCon<T> = {c <: (ContainerT) | ((unique c) and (ascending c))}

This conjunction is straightforwardly translated into a conjunction operation in Rosette.

4.3 The Interaction between Semantic and Syntactic Properties

All semantic properties we have seen so far have been invariants across all operations,
but some semantic properties relate to specific operations given by syntactic properties.
For instance, when specifying a stack container type providing operations push and pop
with the expected last-in-first-out (LIFO) property. Firstly, we define a trait specifying
operations push and pop, namely StackT:

Listing 1 The trait StackT specifying operations push and pop
1 Rustpub trait StackT<T> {
2 fn push(&mut self, elt: T);
3 fn pop(&mut self) −> Option<T>;
4 }

Secondly, we define the semantic property lifo for containers that implement StackT:

Listing 2 The semantic property LIFO
1 Primroseproperty lifo { \c <: StackT −> (forall \x. pop (push c x) == x) }

11:10

Xueying Qin, Liam O’Connor, and Michel Steuwer

Unlike previously, this semantic property includes a requirement that the given con-
tainer implements the trait StackT, enabling us to refer to the operations pop and push
inside the semantic property. In this definition, forall is a combinator with type:

forall : ∀𝑥. (𝑥 → Bool) → Bool (2)

This combinator is implemented with the forall procedure defined in Rosette’s library,
which serves as a construct for creating universally quantified formulae.

Armed with the trait StackT and the semantic property lifo, we can combine all these
elements and declare our stack type as follows:

1 Primrosetype StackCon<T> = {c <: (ContainerT, StackT) | (lifo c)}

In the next section, we will discuss how library developers write specifications for
their container implementations.

5 Library Specifications

Library specifications abstract over Rust implementations, providing a clear definition
of intended semantics of each operation, without respect to performance or implemen-
tation details. This approach allows us to select container implementations by simply
checking their library specifications, rather than their full implementations, against
the properties specified by the application developer. Moreover, using specifications
which are abstracted from implementations makes Primrose easy to repurpose for
programming languages other than Rust, as the same specifications would apply, with
minimal or no modification, to container libraries written in any other language.

By encoding these specifications into property based tests, which validate container
implementations against their library specifications (Section 7.1), we ensure the
selected implementations indeed satisfy a required property specification. Since these
library specifications form a functional correctness specification for each operation,
they could also be used in future as the basis of full functional correctness verification
with a verification framework for Rust [23], but this is out of scope for Primrose.

5.1 The Basic Design of Library Specifications

Library specifications of concrete container implementations are developed based on
Hoare logic [18]. For each concrete container implementation, we provide a set of
Hoare triples, one for each operation. A Hoare triple of the form {𝜙} op {𝜓} states that
if the precondition 𝜙 holds and the operation op is executed, then the postcondition 𝜓

will hold. These conditions are predicates on the state of the program. In our case, the
state contains the container, plus any other inputs and outputs of the operation op.

As mentioned in Section 3, we model the container as a list in Rosette for Primrose’s
library specifications. The list is a model to convey the intended semantics, and
does not proscribe anything about the implementation — the implementation is
free to represent data in any chosen structure. For example, a set data type may
be implemented with a binary search tree, but will still be specified with a list.

11:11

Primrose: Selecting Container Data Types by Their Properties

These model lists are a simple abstraction, easy to analyse, with which all container
operations can be specified.

Library Specifications Convey the Intended Semantics for Implementations It is impor-
tant that all possible executions of a concrete implementation should be captured
by its library specification. Otherwise in the process of selecting implementations by
checking if their library specifications match the required semantic property, Primrose
could select an unsatisfying implementation. More formally, a proof of functional
correctness of an implementation w.r.t. its specification would take the form of a data
refinement [28], where each value of the concrete container type is related to our list
model by an abstraction function 𝛼, and our specification on lists is shown to contain
all possible behaviours of the concrete implementation using a forward simulation:

𝛼−1; op(C) ⊆ op(A);𝛼−1

(where ; is forward composition of relations
and 𝛼−1 is the inverse relation of 𝛼)

◦ ◦

• •

op(A)

𝛼

op(C)

𝛼⊆

Here, op(C) denotes the concrete implementation of our operation op, represented
as a relation from inputs to outputs. The abstract operation op(A) is the maximal
relation satisfying the Hoare triple given in our library specification, and 𝛼 is a suitable
abstraction function that flattens a concrete container into a list.
If a forward simulation is shown for all operations, we can conclude that each

possible execution with the concrete container has a corresponding execution with an
abstract list, thus the specification accurately captures the implementation’s semantics.

For instance, a binary search tree 𝑇 can be abstracted to a sorted list 𝐿 by an abstrac-
tion function inorder that does an in-order traversal. For each operation interacting
with 𝑇 , there exists a corresponding operation at the abstract level defined using 𝐿.
Take the operation insert(T, x), which inserts an element 𝑥 into a binary search tree 𝑇 .
We can abstract such an operation to insert(L, x) which inserts 𝑥 at the right location
in a sorted list. The relation between these two operations is shown by this diagram:

◦ ◦

• •

insert(L,x)

inorder

insert(T,x)

inorder⊆

In this work, we specified four container implementations from Rust’s standard
library (Vec, LinkedList, HashSet, BTreeSet) and four custom container implementations
(SortedVec, LazySortedVec, UniqueVec, LazyUniqueVec) by abstracting them into a list model. As
we discuss in Section 5.5, library specifications abstract over some implementation
details, and, thus, Vec and LinkedList share the same specifications, as do the eager
and lazy SortedVec and UniqueVec implementations. For each specification, we define
a suitable abstraction function for forward simulation which, while not needed for
selection, is used for property-based testing to justify that a concrete implementation
satisfies the intended semantics described by its library specification.

11:12

Xueying Qin, Liam O’Connor, and Michel Steuwer

Completeness of Library Specifications While it is important to ensure that library
specifications indeed convey the intended semantics of the implementation, complete-
ness of library specifications is also important. Without completeness, Primrose could
possibly rule out perfectly valid implementations because it cannot prove that the
required semantic properties are preserved for an incompletely-specified operation.
Our approach easily ensures completeness when each operation is specified by a

deterministic model operation. Forward simulation states that every execution of the
concrete implementation has a corresponding execution in the abstract operation,
while determinism states that such correspondence is one-to-one, i.e., each abstract
execution also has a corresponding concrete one. Thus, just as forward simulation
states that each property established for an abstract operation applies also (via the
inverse of the abstraction function 𝛼−1) to a concrete implementation, completeness
states that each property established for a concrete implementation applies (via
the abstraction function 𝛼) to the abstract operation. With both completeness and
forward simulation, we ensure that all valid implementations and only the valid
implementations are selected by Primrose.

There are many other availiable approaches for modelling library specifications, for
instance, the axiomatic approach used in algebraic specifications for abstract data
types [39], specifying the behaviour of operations as a set of equational axioms that
relate various operations. However, it is hard to ensure the completeness of algebraic
specifications, as it is hard capture all behaviours of all operations by a set of equations.

5.2 The Library Specification of A LinkedList

Rust’s LinkedList is a doubly-linked list. The abstraction function to convert it into a
logic list is straightforward: Collect all nodes’ values with previous and next pointers.

Firstly, we specify the insertion operation, LinkedList::insert, whose type signature is:
1 Rustfn insert(&mut self, elt: T) {...}

Since variables in Rosette are immutable, in the corresponding abstract insertion
operation, we alter the type to return a new list instead of altering the list in-place1:

1 Rosetteabs−insert: List<T> −> T −> List<T>

We can then provide the specification of LinkedList::insert with respect to its corresponding
abstract operation, the maximal relation satisfying the Hoare triple:

{𝑥𝑠0. true} abs-insert {𝑥𝑠0 𝑥 𝑥𝑠. 𝑥𝑠 = model-insert 𝑥𝑠0 𝑥} (3)

Here, 𝑥𝑠0 refers to the initial value of the container and 𝑥𝑠 to the resultant container,
and 𝑥 is the element we insert. The function model−insert is defined in Rosette on lists:

1 Rosette(define (model−insert xs x) (append xs (list x)))

The postcondition states that we expect applying the insertion operation to a container
to produce the same result as the model−insert function. In library specifications, defining
such model operations is a common technique to simplify writing postconditions.

1 Rosette is untyped, but this is morally the type signature.

11:13

Primrose: Selecting Container Data Types by Their Properties

Similarly, we also provide the specification for the operation LinkedList::contains:
1 Rustfn contains(&self, x: &T) −> bool {...}

In our corresponding abstract operation, in addition to the boolean value indicating
whether the given element x is present or not, the input container is also returned,
as we would like to express the input container is not mutable, its value remains
unchanged after this operation. Also, since the underlying value with type T is given by
an immutable reference &T, in the abstract operation we treat the immutable reference
&T as simply T. The signature of the abstract operation is shown below:

Listing 3 The signature of the abstract operation corresponding to LinkedList::contains
1 Rosetteabs−contains: List<T> −> T −> (List<T>, bool)

The Hoare triple that serves as the specification of LinkedList::contains is:

{𝑥𝑠0. true} abs-contains {𝑥𝑠0 𝑥 𝑥𝑠 𝑟. (𝑥𝑠, 𝑟) = model-contains 𝑥𝑠0 𝑥} (4)

Note that in this specification, the model operation model−contains defined in listing 4
has the same type signature as the abstract operation shown in listing 3. It also returns
a pair of values: the output list, which is always equal to the input list, and a boolean
value indicating if the element is present in the list.

Listing 4 The model operation for checking an element’s containment
1 Rosette(define (model−contains xs x)
2 (cond [(list? (member x xs)) (cons xs #t)]
3 [else (cons xs #f)]))

Because model−contains returns the unchanged list, it specifies that the LinkedList::contains
operation should not change the list.

The library specification of the list removal operation is slightly more complicated,
we use T? to denote that a type may be null to express Rust’s Option<T> type, which is the
return type of LinkedList::remove. The type signature of LinkedList::remove is shown below:

1 Rustfn remove(&mut self, x: T) −> Option<T> {...}

This operation removes the first occurrence of an element from the given linked list
and returns it. If the linked list does not contain the element, None is returned and the
list remains unchanged. The signature of the corresponding abstract operation is:

1 Rosetteabs−remove: List<T> −> T −> (List<T>, T?)

The model removal operation has the same signature as the abstract operation. We
return null in Rosette for the None case:

1 Rosette(define (model−remove xs x)
2 (cond [(list? (member x xs)) (cons (remove x xs) x)]
3 [else (cons xs null)]))

Again, we return a pair of the resulting list and the element being removed. Then we
provide the library specification of LinkedList::remove:

{𝑥𝑠0. true} abs-remove {𝑥𝑠0 𝑥 𝑥𝑠 𝑟. (𝑥𝑠, 𝑟) = model-remove 𝑥𝑠0 𝑥} (5)

To provide a complete specification of LinkedList, the library developer must ensure that
each operation of the LinkedList is specified by a trait, and for each operation in each
trait the LinkedList implements, specifications similar to the above are provided.

11:14

Xueying Qin, Liam O’Connor, and Michel Steuwer

5.3 The Library Specification of A BTreeSet

For the LinkedList it is intuitive to use a logic list as a model, as they are both lists.
However, even for non-linear structures such as trees, we can still use logic lists as
a model. Rust’s BTreeSet is a set implemented using a b-tree. All elements are unique
and arranged in ascending order. Thus, our list model of the b-tree is simply a sorted
list in ascending order, where uniqueness of elements is preserved. The abstraction
function 𝛼 that converts the BTreeSet to our list model is simply an in-order traversal.

Our first example is again the specification of the insertion operation with signature:
1 Rustpub fn insert(&mut self, value: T) {...}

The signature of the abstract insert operation on our model lists is the same as for
LinkedList::insert. The specification of abs−insert for BTreeSet, however, differs from that of
LinkedList, as we must maintain ordering and uniqueness of elements:

{𝑥𝑠0. 𝑥𝑠0 = dedup (sort 𝑥𝑠0 <)} abs-insert {𝑥𝑠0 𝑥 𝑥𝑠. 𝑥𝑠 = model-insert 𝑥𝑠0 𝑥} (6)

As before, 𝑥 is the element to be inserted, and 𝑥𝑠0 and 𝑥𝑠 are lists modelling the
container (via the in-order traversal function 𝛼) before and after the abs−insert operation
respectively. We place an assertion 𝑥𝑠0 = dedup (sort 𝑥𝑠0 <) in the precondition requiring
that the model 𝑥𝑠0 to be a sorted list of unique elements. While this precondition
should always be satisfied by an in-order traversal of a valid b-tree, we do not want
our abstraction to constrain the implementation’s behaviour if the data invariants of
the b-tree are violated — given a malformed b-tree, the implementation should be
free to return any result. Because the semantics of abs−insert are the maximal relation
satisfying this specification, this abstract operation contains all possible behaviours of
the concrete implementation if this precondition is violated. The model−insert here is
simply an insertion operation defined on a sorted list of unique elements:

1 Rosette(define (model−insert xs x) (dedup (sort (append xs (list x)) <)))

We can also provide specifications for abstract operations that observe the ordering
of elements in a BTreeSet, such as those operations from the IndexableT trait, since there
is a one-to-one correspondence between each element’s position in a BTreeSet and its
position in the model list abstracted from the BTreeSet. For instance, we provide the
specification of the operation BTreeSet::first, which is the operation obtaining the first
(and also the minimal) element of a BTreeSet with signature:

1 Rustfn first(&self) −> Option<&T> {...}

We again provide the signature of its corresponding abstract operation:
1 abs−first: List<T> −> (List<T>, T?)

Like LinkedList::contains in listing 3, this type includes a returned list, as Primrose does
not consider the immutability of &self in the Rust type signature above. We again
include the requirement that the container is unchanged in the specification:

{𝑥𝑠0. 𝑥𝑠0 = dedup (sort 𝑥𝑠0 <)} abs-first {𝑥𝑠0 𝑥𝑠 𝑥. (𝑥𝑠, 𝑥) = model-first 𝑥𝑠0} (7)

Here, model−first is defined as a function that returns the first element of the list, is
present, along with the list itself:

11:15

Primrose: Selecting Container Data Types by Their Properties

1 Rosette(define (model−first xs) (cond [(null? xs) (cons xs null)] [else (cons xs (first xs))]))

As before, our precondition includes the assumption that the model 𝑥𝑠0 abstracted
from the BTreeSet contains unique elements that are sorted in ascending order.

5.4 The Library Specification of A HashSet

A tree implementation of a set maintains its elements in a fixed ascending order, and
the ordering of our abstract list model simply reflects the ordering of the elements
in the tree. However, some container implementations do not have a fixed ordering
of elements. For instance, the HashSet in Rust is a set implementation using a hash
algorithm which is randomly seeded. Despite the implementation storing elements
in an unspecified order, we may still safely use a sorted, ascending list of unique
elements as our abstract model of a HashSet: Our abstraction function 𝛼 merely collects
all elements from the HashSet into a list and then sorts them into ascending order.
Since the ordering of elements in our list is now different from the ordering of

elements in the HashSet, the developer may specify properties relating to the ordering of
elements, such as ascending, that are not satisfied by the implementation, but are trivially
satisfied by the abstraction function. This would lead to HashSet being considered a
valid choice for an ascending container. However, Primrose prevents this by the checking
of syntactic properties. The HashSet type does not implement any trait with operations
that allow the ordering of its elements to be observed.

Therefore, in applications for which the ordering of elements is important, HashSet
is never a valid choice. The selection process of valid implementations according to
traits is discussed in Section 6.1.

If a library developer decides to write a HashSet with operations that leak ordering,
they can provide a nondeterministic library specification for such a HashSet that can
still be used by Primrose in the selection process.
For the operations defined on HashSet and BTreeSet, such as insert, remove and contains,

the specifications of both implementations are identical—after all, the only observable
difference between the implementations is performance—but the specification for
HashSet lacks operations that observe the ordering of its elements, such as first or last.

5.5 Abstracting Over Implementation Details with Library Specifications

Since the basic container operations of both HashSet and BTreeSet have the same exter-
nally observable behaviour, we can use the same specifications for both implementa-
tions. There are many such cases where specifications can be re-used: For instance,
we provide two implementations of an ascending vector: SortedVec and LazySortedVec.
SortedVec maintains the ascending order of elements inside the vector on insertion
(eager) and LazySortedVec instead sorts elements whenever the vector is accessed (lazy).
Since both implementations share the same externally observable behaviour, we use
the same model for both implementations: A list with elements sorted in ascending
order. Also, their operations are specified with the same set of model operations. For
the eager implementation, the abstraction function 𝛼 simply collects all its elements

11:16

Xueying Qin, Liam O’Connor, and Michel Steuwer

into a list. For the lazy implementation, in addition to collecting all elements into a
list, the abstraction function 𝛼 also sorts elements into ascending order.

6 Selecting and Ranking Implementations

Before ranking container implementations by performance or other non-functional
metrics, Primrose must first identify all implementations that comply with the property
specifications provided by the application developer.

6.1 Selecting Container Implementations Satisfying Syntactic Properties

The first step of selecting valid implementations is to select concrete container imple-
mentations from the library that satisfy required syntactic properties in a property
specification, which is straightforward. Primrose simply picks concrete container im-
plementations that implement the traits required by the property specifications.
For instance, suppose that in a property specification, an application developer

requires a container type implementing traits ContainerT and IndexableT, the elements of
which are sorted in ascending order:

Listing 5 Property specification composing properties: ascending, ContainerT and IndexableT
1 Primroseproperty ascending { \c −> (for−all−consecutive−pairs c leq?) }
2 type AscendingIndexableCon<T> = {c <: (ContainerT, IndexableT) | (ascending c)}

Rust’s collections library has concrete container implementations Vec, LinkedList,
BTreeSet and HashSet, where Vec, LinkedList and BTreeSet implement both required traits
while HashSet does not implement the trait IndexableT. Clearly, HashSet does not satisfy
all required syntactic properties. Therefore, HashSet is ruled out as a possible imple-
mentation for AscendingIndexableCon<T>. The implementation for AscendingIndexableCon<T> is
then selected from the remaining Vec, LinkedList and BTreeSet types by checking if the
library specifications satisfy the required semantic property, ascending.

6.2 Selecting Container Implementations Satisfying Semantic Properties

After gathering container implementations with required syntactic properties, Primrose
selects the ones that satisfy the required semantic properties from these candidates. As
discussed in Section 5, our library specifications abstract over the concrete container
implementations, describing their externally observable semantics in a compact and
tractable format. Primrose performs this selection process by encoding the property
specifications as verification conditions against the candidates’ library specifications
in Rosette, to be discharged by an SMT solver in Rosette’s backend.

To generate the required verification conditions, Primrose first translates the required
semantic properties, given in the specification language of Primrose, into definitions
in Rosette that can be used by the solver. The container type Con<T> is resolved into
the model type used in our library specifications, i.e., a logic list. For instance, the
generated code according to the property ascending from listing 5 is:

11:17

Primrose: Selecting Container Data Types by Their Properties

1 Rosette(define ascending (lambda (c) (for−all−consecutive−pairs c leq?)))

With these Rosette definitions, Primrose generates verification conditions. For exam-
ple, to check if BTreeSet is ascending, Primrose checks that the semantic property ascending
is an invariant held across each operation defined for BTreeSet. For instance, for the
insertion operation, specified by (6) in Section 5.3, it checks that the property ascending
is preserved by any execution that satisfies its precondition and its postcondition:

∀ 𝑥𝑠0 𝑥𝑠 𝑥.
𝑥𝑠0 = dedup (sort 𝑥𝑠0 <) 𝑥𝑠 = model-insert 𝑥𝑠0 𝑥

ascending 𝑥𝑠0 ⇒ ascending 𝑥𝑠

(where: ∃ 𝑥𝑠0. ascending 𝑥𝑠0 ∧ 𝑥𝑠0 = dedup (sort 𝑥𝑠0 <))

Figure 5 The rule for checking the operation BTreeSet::insert against ascending

Recall that 𝑥𝑠0 and 𝑥𝑠 are model lists abstracted from the BTreeSet, specifically, 𝑥𝑠0
is the model for the input BTreeSet, and 𝑥𝑠 is the model for the resulting BTreeSet of
BTreeSet::insert. The model operation model−insert specifies the behaviour of BTreeSet::insert’s
corresponding abstract operation. Given the rule shown in Figure 5, the solver attempts
to find a counterexample, i.e., for all input models 𝑥𝑠0 that satisfy the semantic
property ascending, the solver tries to find a resulting model of the operation that does
not satisfy the property. If there is no such counterexample found, the solver will
conclude that the operation BTreeSet::insert satisfies the property ascending.

This search for a counterexample is parameterised by a model size, which denotes
the maximum size of the input list 𝑥𝑠0 considered by the solver. This parameter is
configurable by the application developer using Primrose, and its impact on Primrose’s
selection time is evaluated in Section 7.2.
The rule contains a side condition stating that there should be no contradiction

between the required semantic property and the precondition of the operation. This
side condition is important for ensuring that the solver does not search for a coun-
terexample in an empty search space then falsely conclude that the absence of the
counterexample means that the property holds. The side condition requires that there
exists at least one model that satisfies both the precondition of the operation and the
required semantic property. Without the side condition, the rule is unsound.
In general, the library specification of each operation takes the form:

{𝜙(𝑥𝑠0, ®𝑢)} op {𝜓(𝑥𝑠0, 𝑥𝑠, ®𝑣)} (8)

where 𝑥𝑠0 is the (abstract list model of the) input container and 𝑥𝑠 is the result of the
operation op. The sets of variables ®𝑢 and ®𝑣 denote any additional variables involved
in the specification, such as additional inputs or outputs to the operation. The general
form of the verification condition Primrose generates for the SMT solver, to check if
an operation op satisfies a property 𝑃, is given in Figure 6.
For our BTreeSet example, Primrose checks these verification conditions for each

operation of ContainerT and IndexableT—the traits implemented by BTreeSet. Because the
property ascending is satisfied by all operations, Primrose concludes that the BTreeSet is
a valid implementation choice for the required container type AscendingIndexableCon<T>.

11:18

Xueying Qin, Liam O’Connor, and Michel Steuwer

∀ 𝑥𝑠0 𝑥𝑠 ®𝑢 ®𝑣.
𝜙(𝑥𝑠0, ®𝑢) 𝜓(𝑥𝑠, ®𝑣)

𝑃(𝑥𝑠0) ⇒ 𝑃(𝑥𝑠)
(where: ∃ 𝑥𝑠0 ®𝑢. 𝑃(𝑥𝑠0) ∧ 𝜙(𝑥𝑠0, ®𝑢))

Figure 6 The rule for checking an operation against a property

The same checks are also run for the other two candidates that satisfy the re-
quired syntactic properties (Vec and LinkedList) but they do not satisfy the required
semantic property ascending. Therefore, Primrose concludes that only BTreeSet is a valid
implementation for the required container type AscendingIndexableCon<T>.

6.3 Handling Interactions Between Semantic and Syntactic Properties

In this section, we discuss how Primrose selects library implementations with semantic
and syntactic properties, such as the stack container StackCon<T> from Section 4.3,
where the operations push and pop specified in the trait StackT (listing 1) are made
available to the semantic property lifo (listing 2).

Firstly, Primrose generates the definition of semantic property lifo in Rosette, where
the operations push and pop are now replaced with their model operations:

1 Rosette(define lifo (lambda (c) (forall (list x) (equal? (cdr (model−pop (model−push c x))) x))))

The specific model operations model−pop and model−push are supplied to this definition
for each candidate type considered by Primrose. Recall that our library specifications
state that these model operations exactly specify the intended behaviour of every
library operation, which means that these model operations can be used here to
express assertions about the interaction between operations such as push and pop.
Such assertions will, by virtue of forward simulation, also apply to the concrete
implementations of the data type.

To illustrate the selection process, suppose a library developer provides two imple-
mentations that implement push and pop. The first one is a last-in-first-out implemen-
tation, where the library specification of push and pop is:

{𝑥𝑠0. true} abs-push1 {𝑥𝑠0 𝑥 𝑥𝑠. 𝑥𝑠 = model-push 𝑥𝑠0 𝑥} (9)
{𝑥𝑠0. true} abs-pop1 {𝑥𝑠0 𝑥𝑠 𝑥. (𝑥𝑠, 𝑥) = model-pop 𝑥𝑠0} (10)

And the model operations are defined as:
1 Rosette(define (model−push−front xs x) (append xs (list x)))
2 (define (model−pop xs) (cond [(null? xs) (cons xs null)]
3 [else (cons (take xs (− (length xs) 1)) (last xs))]))

With these two model operations, the solver can verify that this library specification
satisfies the semantic property lifo.
By contrast, the second implementation is a first-in-first-out implementation. The

library specification of push and pop appears similar:

{𝑥𝑠0. true} abs-push2 {𝑥𝑠0 𝑥 𝑥𝑠. 𝑥𝑠 = model-push 𝑥𝑠0 𝑥} (11)
{𝑥𝑠0. true} abs-pop2 {𝑥𝑠0 𝑥𝑠 𝑥. (𝑥𝑠, 𝑥) = model-pop 𝑥𝑠0} (12)

However, the model operations have different semantics:

11:19

Primrose: Selecting Container Data Types by Their Properties

1 Rosette(define (model−push−end xs x) (append (list x) xs))
2 (define (model−pop xs) (cond [(null? xs) (cons xs null)]
3 [else (cons (take xs (− (length xs) 1)) (last xs))]))

With these two model operations, the solver correctly concludes that this library
specification does not satisfy the semantic property lifo, and Primrose does not consider
this implementation as a valid choice for the container StackCon<T>.

6.4 Code Generation and Ranking Implementations by Performance

Once Primrose has selected the valid container implementations, it will generate a
Rust program for each valid candidate by resolving the property specification into
the selected container implementation. In Figure 3 we show a simplified version of
generated programs where property specifications are directly replaced with concrete
implementations, in practice Primrose carefully generates Rust’s trait objects to encap-
sulate the concrete implementation and exposing only those operations in Rust traits
which are specified as syntactic properties.

As a proof-of-concept implementation, the current Primrose prototype ranks the
generated Rust code for each valid implementation by executing all candidates and
measuring their runtime on some test input data. We anticipate adopting more
sophisticated ranking techniques, such as the ones discussed in the related work,
in the future. Our existing prototype of Primrose focuses on enabling application
developers to specify their functional requirements, and automating the selection of
valid container implementations.

7 Evaluation

For Primrose to be feasible for use as a programming tool, it must be practical to ensure
that our library specifications are sound abstractions of our container implementations,
and the selection process itself must not take a prohibitively long time. Our evaluation
demonstrates feasibility in both of these aspects. All measurements are conducted on
a MacBook Pro with 32GB of RAM and a 2.4GHz 8-Core Intel Core i9 processor.

7.1 Correctness of Library Implementations w.r.t their Library Specifications

To ensure the selected implementations are correct, we validate our Rust container
library implementations against the library specifications using property-based test-
ing [10]. We use the framework proptest [2] for encoding and performing the tests.

Firstly, we encode the model list with its operations in Rust. Specifically, we encode
the model list from Rosette as an immutable ConsList [32] in Rust, along with all
its operations. Then we implement the abstraction function 𝛼 for each container
implementation, and, like Chen et al. [8, 9], we encode the forward simulation
obligation for the library specification of each operation as assertions in a test.

11:20

Xueying Qin, Liam O’Connor, and Michel Steuwer

3 5 7 9
0

50

100

Model size

Ti
m
e
(s
)

ConT ConT+IndxT ConT ConT+IndxT
Unique Ascending
Unique+Ascending Descending

LIFO/ConT+StackT

2 4 6 8

10

20

Library size
Figure 7 Primrose’s efficiency of selecting implementations for different properties

For each test, 100 test inputs are randomly generated. For our library with eight
container implementations, in total 7200 inputs are tested in 7.315 seconds. We con-
clude that with the existing testing framework, we are able to validate the functional
correctness of our container implementations w.r.t. our library specifications efficiently,
ensuring that implementations selected by Primrose are correct.

7.2 Evaluation of Primrose’s Selection Time

For Primrose to be practical, it must perform selection with a reasonable time, even
though, as a pre-processing tool, it does not have to be invoked on every compilation
run. After the initial invocation, it will only be invoked if the property specification or
any library specifications are changed.

The efficiency of the SMT-based selection time is mainly determined by two factors:
the model size and the library size, which together define the search space in which
the solver attempts to find a counterexample. If a counterexample is found, Primrose
will conclude that the library specification does not satisfy the required semantic
property. We expect the solver time to grow linearly with the number of container
implementations from which we select (library size) and non-linearly with the model
size, which is the length of the input model list to the abstract operation, as this should
grow the search space polynomially.

Figure 7 shows the measurements of Primrose’s selection time. The left side shows
that the selection time, for a fixed library size of eight implementations, increases with
the model size. The right side shows that for a fixed model size of five, the selection
time increases linearly when the library size is increased.
The complexity of the property specifications and the number of satisfying im-

plementations are also factors that affect the efficiency of the selection, since they
determine how difficult it is for the solver to find a counterexample. For example,
since the definition of lifo has constant complexity, the model size and library size do
not affect its selection time as much as for properties with high polynomial complex-

11:21

Primrose: Selecting Container Data Types by Their Properties

ity such as unique and ascending. None of our example containers satisfy the property
descending. As SMT solvers are faster at finding a counterexample than exhaustively
proving that no counterexample exists, the selection time for descending is faster than
for ascending, despite both properties having the same algorithmic complexity.

The selection is always completed in less than 30 seconds with a model size of 3 and
the full library of 8 implementations. Thus, we consider Primrose to be a practically
feasible tool. An increase in model size raises selection time quickly, but in practice,
a model with size of more than five is not required to admit counterexamples for
most conceivable semantic properties that the application developer may write. This
is based on the small scope hypothesis in Alloy [20]. The experimental results show,
that Primrose can easily be used for medium-size libraries.

8 Discussion of Limitations

Primrose’s prototype implementation has some limitations that we discuss here.
Primrose currently covers properties of sequential containers like lists and sets,

and we have not yet looked into associative containers like maps and dictionaries.
However, we believe it should be possible to characterise themwith the same technique:
application developers using syntactic properties to describe desired operations and
semantic properties to state predicates that should be held by keys and values, and
library developers providing library specifications using a list model with key-value
pairs as elements.
The other limitation of our current implementation is that we implicitly require

all elements inside a container to have some ordering for them to be comparable
using leq and geq. In the future, we should allow application developers to state if
the elements inside the container are comparable or have ordering by enriching the
syntax and type system of our property specification language.

9 Related Work

Refinement types Refinement types, first introduced for ML [13], are types enriched
with logical predicates, often from an SMT-decidable logic [5], allowing programmers
to express rich logical constraints in the type system and automatically check them.
Refinement types have recently been implemented in languages such as Haskell
[36, 37] and F* [33], supporting very rich specifications suitable for verifying the
correctness of programs. While the syntax of Liquid Haskell inspires our design of
the syntax of property specifications, we use refinement types not for verification,
but for data abstraction, allowing application developers to specify their semantic
requirements for the selection process.
Abstract data types and formal methods Existing work in algebraic specifications [16,
39] provide a formal definition of abstract data types where the semantics of operations
are specified with a set of equational axioms. By contrast, our library specifications are
model-based. As mentioned in Section 5.1, this allows us to easily ensure completeness

11:22

Xueying Qin, Liam O’Connor, and Michel Steuwer

of library specifications. There exist many formal modelling tools that facilitate model-
based specification of abstract data types and software systems more generally, for
example Z [31], VDM [21], and most recently Alloy [19]. While these tools allow
application developers to formally analyse and explore the software design space,
including formal reasoning about abstract data types, they work purely on the level
of models and do not typically connect to actual code, as Primrose does.
Performance-oriented selection techniques Many techniques for design space explo-
ration, particularly machine learning techniques, have been applied in compilers [14]
to selected performance optimization techniques [6] using various characteristics as
features that are then used to rank the performance of multiple implementations [30].
Many dynamic selection techniques have been developed for assisting the selection of
performant containers, based on different evaluation criteria such as workload data
[12], architectural concerns [22] and runtime metrics [29]. In addition to dynamic
container selection, CoCo [40] is tool allowing safe online switching. None of these
techniques, however, provide a general scheme to allow application developers to
specify desired behaviour, instead, they purely focus on selecting between multiple,
pre-known, valid container implementations. Such techniques could be incorporated
into Primrose’s ranking process, and are highly complementary with our work.

10 Conclusion

We have applied techniques from verification and formal methods in a new way,
raising the level of abstraction by freeing developers from the burden of choosing
concrete container implementations. Instead, application developers can specify their
expected behaviour using semantic properties—a highly general abstraction technique.
We provide a methodology to specify container libraries with library specifications,
and describe our mechanism to check semantic properties against these specifica-
tions using SMT solvers. We implement Primrose for Rust and specify eight Rust
container implementations. We show that Primrose is a practical tool that can be
feasibly integrated into a programmer’s workflow.

Data Availability Statement The artifact of this paper is on Zenodo [26].

Acknowledgements The author Xueying Qin would like to express her special thanks
to FromSoftware. Their game Elden Ring provided her remarkable mental supports
through the development of the prototype of Primrose. Also, she would like to express
her gratitude to HAL Laboratory, their game Kirby and the Forgotten Land provided
her aesthetic inspirations for designing the interface of Primrose and served as her
great company when she was writing this paper. Lastly, she would like to thank ATLUS.
Their game Persona 5 Royal gives her courage to deal with obstacles in the past two
rounds of submissions and revisions.

11:23

Primrose: Selecting Container Data Types by Their Properties

References

[1] Edouard Alligand. Using C++ containers efficiently. 2020. url: https://blog.
quasar.ai/using-c-containers-efficiently. Accessed Sep. 2022.

[2] AltSysRq. Proptest: A Rust property testing framework. 2022. url: https://github.
com/altsysrq/proptest. Accessed Sep. 2022.

[3] Martin Ankerl. Hashmaps Benchmarks – Finding the Fastest; Memory Efficient
Hashmap. 2019. url: https : // martin . ankerl . com / 2019/ 04 / 01 / hashmap -
benchmarks-01-overview/. Accessed Sep. 2022.

[4] Rudolf Bayer. “Symmetric Binary B-Trees: Data Structure and Maintenance
Algorithms”. In: Acta Informatica 1 (1972), pages 290–306. doi: 10 . 1007/
BF00289509.

[5] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David Langworthy.
“Semantic Subtyping with an SMT Solver”. In: Proceedings of the 15th ACM SIG-
PLAN International Conference on Functional Programming. ICFP ’10. Baltimore,
Maryland, USA: Association for Computing Machinery, 2010, pages 105–116.
isbn: 9781605587943. doi: 10.1145/1863543.1863560.

[6] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle,
and Olivier Temam. “Rapidly Selecting Good Compiler Optimizations Using
Performance Counters”. In: Proceedings of the International Symposium on Code
Generation and Optimization. CGO ’07. USA: IEEE Computer Society, 2007,
pages 185–197. isbn: 0769527647. doi: 10.1109/CGO.2007.32.

[7] Paul Cechner. vector vs map performance confusion. 2014. url: https://stac
koverflow.com/questions/24542936/vector-vs-map-performance-confusion.
Accessed Sep. 2022.

[8] Zilin Chen, Liam O’Connor, Gabriele Keller, Gerwin Klein, and Gernot Heiser.
“The Cogent Case for Property-Based Testing”. In: Proceedings of the 9th Work-
shop on Programming Languages and Operating Systems. PLOS’17. Shanghai,
China: ACM, 2017, pages 1–7. isbn: 9781450351539. doi: 10.1145/3144555.
3144556.

[9] Zilin Chen, Christine Rizkallah, Liam O’Connor, Partha Susarla, Gerwin Klein,
Gernot Heiser, and Gabriele Keller. “Property-Based Testing: Climbing the
Stairway to Verification”. In: Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering. SLE 2022. Auckland, New
Zealand: ACM, Dec. 2022. doi: 10.1145/3567512.3567520.

[10] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs”. In: Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming. ICFP ’00. New York, NY, USA:
Association for Computing Machinery, 2000, pages 268–279. isbn: 1581132026.
doi: 10.1145/351240.351266.

11:24

https://blog.quasar.ai/using-c-containers-efficiently
https://blog.quasar.ai/using-c-containers-efficiently
https://github.com/altsysrq/proptest
https://github.com/altsysrq/proptest
https://martin.ankerl.com/2019/04/01/hashmap-benchmarks-01-overview/
https://martin.ankerl.com/2019/04/01/hashmap-benchmarks-01-overview/
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00289509
https://doi.org/10.1145/1863543.1863560
https://doi.org/10.1109/CGO.2007.32
https://stackoverflow.com/questions/24542936/vector-vs-map-performance-confusion
https://stackoverflow.com/questions/24542936/vector-vs-map-performance-confusion
https://doi.org/10.1145/3144555.3144556
https://doi.org/10.1145/3144555.3144556
https://doi.org/10.1145/3567512.3567520
https://doi.org/10.1145/351240.351266

Xueying Qin, Liam O’Connor, and Michel Steuwer

[11] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009. isbn: 978-0-262-03384-
8. url: http://mitpress.mit.edu/books/introduction-algorithms.

[12] Diego Costa and Artur Andrzejak. “CollectionSwitch: A Framework for Efficient
and Dynamic Collection Selection”. In: Proceedings of the 2018 International
Symposium on Code Generation and Optimization. CGO 2018. Vienna, Austria:
Association for ComputingMachinery, 2018, pages 16–26. isbn: 9781450356176.
doi: 10.1145/3168825.

[13] Tim Freeman and Frank Pfenning. “Refinement Types for ML”. In: Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation. PLDI ’91. Toronto, Ontario, Canada: Association for Computing
Machinery, 1991, pages 268–277. isbn: 0897914287. doi: 10.1145/113445.113468.

[14] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski,
Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks,
Eric Courtois, et al. “Milepost gcc: Machine learning enabled self-tuning com-
piler”. In: International journal of parallel programming 39.3 (2011), pages 296–
327.

[15] Jean-Yves Girard. “The System F of Variable Types, Fifteen Years Later”. In:
Theor. Comput. Sci. 45.2 (1986), pages 159–192. doi: 10.1016/0304-3975(86)
90044-7.

[16] John Guttag. “Abstract Data Types and the Development of Data Structures”. In:
Proceedings of the 1976 Conference on Data: Abstraction, Definition and Structure.
Salt Lake City, Utah, USA: Association for Computing Machinery, 1976, page 72.
isbn: 9781450378987. doi: 10.1145/800237.807124.

[17] Roger Hindley. “The principal type-scheme of an object in combinatory logic”.
In: Transactions of the American Mathematical Society 146 (1969), pages 29–60.

[18] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun.
ACM 12.10 (Oct. 1969), pages 576–580. issn: 0001-0782. doi: 10.1145/363235.
363259.

[19] Daniel Jackson. Software Abstractions: Logic, Language and Analysis. MIT Press,
2006. isbn: 978-0262017152.

[20] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press,
2012.

[21] Cliff B. Jones. Systematic Software Development Using VDM (2nd Ed.) USA:
Prentice-Hall, Inc., 1990. isbn: 0138807337.

[22] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and Santosh Pande.
“Brainy: Effective Selection of Data Structures”. In: Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI ’11. San Jose, California, USA: Association for Computing Machinery,
2011, pages 86–97. isbn: 9781450306638. doi: 10.1145/1993498.1993509.

11:25

http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3168825
https://doi.org/10.1145/113445.113468
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1145/800237.807124
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/1993498.1993509

Primrose: Selecting Container Data Types by Their Properties

[23] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “Rust-
Belt: Securing the Foundations of the Rust Programming Language”. In: Proc.
ACM Program. Lang. 2.POPL (Dec. 2017). doi: 10.1145/3158154.

[24] Robin Milner. “A theory of type polymorphism in programming”. In: Journal of
Computer and System Sciences 17.3 (1978), pages 348–375. issn: 0022-0000.
doi: https://doi.org/10.1016/0022-0000(78)90014-4.

[25] Douglas A. H. Orr. Finding unique items - hash vs sort? 2019. url: https :
//douglasorr.github.io/2019-09-hash-vs-sort/article.html. Accessed Sep. 2022.

[26] Xueying Qin, Liam O’Connor, and Michel Steuwer. Artifact for Primrose: Select-
ing Container Data Types by their Properties. Dec. 2022. doi: 10.5281/zenodo.
7419588.

[27] John C. Reynolds. “Towards a theory of type structure”. In: Programming
Symposium, Proceedings Colloque sur la Programmation, Paris, France, April
9-11, 1974. Edited by Bernard J. Robinet. Volume 19. Lecture Notes in Computer
Science. Springer, 1974, pages 408–423. doi: 10.1007/3-540-06859-7_148.

[28] Willem-Paul de Roever and Kai Engelhardt. “Properties of Simulation”. In: Data
Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1998,
pages 73–89. doi: 10.1017/CBO9780511663079.005.

[29] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adaptive Selec-
tion of Collections”. In: Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’09. Dublin, Ireland: Asso-
ciation for Computing Machinery, 2009, pages 408–418. isbn: 9781605583921.
doi: 10.1145/1542476.1542522.

[30] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don S.
Batory, Marko Rosenmüller, and Gunter Saake. “Predicting performance via
automated feature-interaction detection”. In: 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. Edited by
Martin Glinz, Gail C. Murphy, and Mauro Pezzè. IEEE Computer Society, 2012,
pages 167–177. doi: 10.1109/ICSE.2012.6227196.

[31] J. M. Spivey. The Z Notation: A Reference Manual. USA: Prentice-Hall, Inc., 1989.
isbn: 013983768X.

[32] Bodil Stokke. im conslist: A Rust cons-list implementation. 2022. url: https:
//docs.rs/im/10.2.0/im/conslist/struct.ConsList.html. Accessed Sep. 2022.

[33] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves
Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-
Béguelin. “Dependent Types and Multi-Monadic Effects in F*”. In: Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’16. St. Petersburg, FL, USA: Association for Computing
Machinery, 2016, pages 256–270. isbn: 9781450335492. doi: 10.1145/2837614.
2837655.

11:26

https://doi.org/10.1145/3158154
https://doi.org/https://doi.org/10.1016/0022-0000(78)90014-4
https://douglasorr.github.io/2019-09-hash-vs-sort/article.html
https://douglasorr.github.io/2019-09-hash-vs-sort/article.html
https://doi.org/10.5281/zenodo.7419588
https://doi.org/10.5281/zenodo.7419588
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1017/CBO9780511663079.005
https://doi.org/10.1145/1542476.1542522
https://doi.org/10.1109/ICSE.2012.6227196
https://docs.rs/im/10.2.0/im/conslist/struct.ConsList.html
https://docs.rs/im/10.2.0/im/conslist/struct.ConsList.html
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655

Xueying Qin, Liam O’Connor, and Michel Steuwer

[34] Emina Torlak and Rastislav Bodik. “A Lightweight Symbolic Virtual Machine
for Solver-Aided Host Languages”. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’14.
Edinburgh, United Kingdom: Association for Computing Machinery, 2014,
pages 530–541. isbn: 9781450327848. doi: 10.1145/2594291.2594340.

[35] Emina Torlak and Rastislav Bodík. “Growing solver-aided languages with
rosette”. In: ACM Symposium on New Ideas in Programming and Reflections on
Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA, October
26-31, 2013. Edited by Antony L. Hosking, Patrick Th. Eugster, and Robert
Hirschfeld. ACM, 2013, pages 135–152. doi: 10.1145/2509578.2509586.

[36] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. “Abstract Refinement
Types”. In: Programming Languages and Systems - 22nd European Symposium
on Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings. Edited by Matthias Felleisen and Philippa Gardner. Volume 7792.
Lecture Notes in Computer Science. Springer, 2013, pages 209–228. doi: 10.
1007/978-3-642-37036-6_13.

[37] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-
Jones. “Refinement Types for Haskell”. In: Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming. ICFP ’14. Gothenburg,
Sweden: Association for Computing Machinery, 2014, pages 269–282. isbn:
9781450328739. doi: 10.1145/2628136.2628161.

[38] Baptiste Wicht. C++ benchmark – std::vector VS std::list VS std::deque. 2012.
url: https://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-
deque.html. Accessed Sep. 2022.

[39] Martin Wirsing. “Algebraic Specification”. In: Formal Models and Semantics.
Edited by Jan Van Leeuwen. Handbook of Theoretical Computer Science. Ams-
terdam: Elsevier, 1990, pages 675–788. isbn: 978-0-444-88074-1. doi: https:
//doi.org/10.1016/B978-0-444-88074-1.50018-4.

[40] Guoqing Xu. “CoCo: Sound and Adaptive Replacement of Java Collections”.
In: ECOOP 2013 - Object-Oriented Programming - 27th European Conference,
Montpellier, France, July 1-5, 2013. Proceedings. Edited by Giuseppe Castagna.
Volume 7920. Lecture Notes in Computer Science. Springer, 2013, pages 1–26.
doi: 10.1007/978-3-642-39038-8_1.

11:27

https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/2628136.2628161
https://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html
https://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html
https://doi.org/https://doi.org/10.1016/B978-0-444-88074-1.50018-4
https://doi.org/https://doi.org/10.1016/B978-0-444-88074-1.50018-4
https://doi.org/10.1007/978-3-642-39038-8_1

Primrose: Selecting Container Data Types by Their Properties

About the authors

Xueying Qin is a PhD student at the University of Edinburgh.
Contact her at xueying.qin@ed.ac.uk.

Liam O’Connor is a lecturer in Programming Languages for Trust-
worthy Systems at the University of Edinburgh. His research fo-
cuses on combining formal methods techniques with practical
programming languages and tools. Contact him at l.oconnor@ed.
ac.uk.

Michel Steuwer is a lecturer in Compilers and Programming
Languages at the University of Edinburgh. His research on com-
piler design and domain-specific languages aims to drastically
simplify the programming of complex parallel hardware devices
while improving performance and efficiency. Contact him at
michel.steuwer@ed.ac.uk.

11:28

mailto:xueying.qin@ed.ac.uk
mailto:l.oconnor@ed.ac.uk
mailto:l.oconnor@ed.ac.uk
mailto:michel.steuwer@ed.ac.uk

	1 Introduction
	2 Motivation
	3 Overview
	4 Property Specifications
	4.1 Syntactic Properties as Traits
	4.2 Semantic Properties as Predicates
	4.3 The Interaction between Semantic and Syntactic Properties

	5 Library Specifications
	5.1 The Basic Design of Library Specifications
	5.2 The Library Specification of A LinkedList
	5.3 The Library Specification of A BTreeSet
	5.4 The Library Specification of A HashSet
	5.5 Abstracting Over Implementation Details with Library Specifications

	6 Selecting and Ranking Implementations
	6.1 Selecting Container Implementations Satisfying Syntactic Properties
	6.2 Selecting Container Implementations Satisfying Semantic Properties
	6.3 Handling Interactions Between Semantic and Syntactic Properties
	6.4 Code Generation and Ranking Implementations by Performance

	7 Evaluation
	7.1 Correctness of Library Implementations w.r.t their Library Specifications
	7.2 Evaluation of Primrose's Selection Time

	8 Discussion of Limitations
	9 Related Work
	10 Conclusion
	About the authors

