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Shoggoth and Strategic Rewriting

Shoggoth
A blob with a lot of eyes. It is a
shape-shifter, making the sound
‘Tekeli-li! Tekeli-li!’ which can no
longer be understood by
anyone. [Lovecraft, 1931]

Strategic rewriting
A language performs syntactic
transformation, which is lack of
formal understanding.
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Introduction



Overview of Strategic Rewriting Languages

System S [Visser and el Abidine Benaissa, 1998], the core calculus of strategic
rewriting languages like ELEVATE [Hagedorn et al., 2020], Stratego [Visser, 2001] and
Strafunski [Kaiser and Lämmel, 2009] has atomic strategies and composed strategies.

Atomic strategy
An atomic strategy is a rewrite rule:

addcom : a + b⇝ b + a addid : 0 + a⇝ a

multcom : a ∗ b⇝ b ∗ a
mapFusion : map f (map g xs) ⇝ map (f ◦ g) xs

Composed strategy
addcom ; addid addcom <+ multcom
repeat(mapFusion)

Strategy combinator
Strategy combinators compose
strategies together and controls the
application of atomic strategies:

s1 ; s2 sequential composition, apply s1 then s2
s1 <+ s2 left choice, if fail to apply s1 then s2
repeat(s) keep applying s until inapplicable
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Importance of Strategic Rewriting Languages

• Strategic rewriting languages provide programmers with combinators and generic
traversals that allow them to:

• control the application of rewrite rules
• reuse rewrite rules

• Many application areas: program optimisation (ELEVATE [Hagedorn et al., 2020]),
writing interpreter/compiler for DSLs (Spoofax/Stratego [Visser, 2001]) etc.

Shoggoth: A Formal Foundation for Strategic Rewriting 4



Importance of A Formal Understanding of Strategic Rewriting Languages

Strategies can go wrong
• Result in error - an atomic strategy is not defined for certain expressions

or strategies are not well composed, for example: addcom ; multcom
• Do not terminate - for example: repeat(SKIP)

• Do not rewrite an expression into desired form

Therefore, we would like a formal understanding of these strategies and a framework
that allows us to formally reason about the execution of these strategies.
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Existing Formal Works

• Big-step operational semantics of System S without modelling divergence
[Visser and el Abidine Benaissa, 1998].

• Weakest preconditional calculus for System S using computational tree logic
(CTL) [Kieburtz, 2001]. It has following issues:

• not expressive enough to reason about nondeterminism in traversals
• problematic fixed-point operator construction
• soundness of the calculus is not proven
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Our Contributions

• Providing the formal semantics of System S, including both denotational and
operational models.

• Featuring nondeterminism, errors, and divergence.
• Proving these two semantics models are equivalent.

• Providing the weakest precondition calculus for the strategic rewriting language.
• Proving its soundness w.r.t. the denotational semantics.

• Demonstrating how to use the weakest precondition calculus to prove properties
of strategic rewriting.
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Syntax of System S



Introduction to System S and Expressions to be Rewritten

System S
System S [Visser and el Abidine Benaissa, 1998] contains atomic strategies
(rewrite rules), strategy combinators which compose strategies and traversals
that traverse the expression AST.

Expression
The expressions being rewritten by strategies are in the form of:

Expressions(E) e := Leaf |
n
ee
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Syntax of Strategies

Strategy
Strategy (S) s := SKIP (Always succeeds) | ABORT (Always results in error)

| atomic (Atomic strategy)

| X (Variable)

| s1 ; s2 (Sequential composition)

| s1 <+ s2 (Left choice)

| s1 <+> t2 (Nondeterministic choice)

| one(s) (Apply s to one child, nondeterministic)

| some(s) (Apply s to as many children as possible, nondeterministic)

| all(s) (Apply s to all children, nondeterministic)

| 𝜇X .s (Fixed-point operator)
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Semantics of System S



Semantics by Examples - Skip, Abort and Atomic

Examples
addcom : a + b⇝ b + a 1 + 3

addcom 3 + 1 1 + 3 SKIP 1 + 3 1 + 3 ABORT err

Operational semantics

e
atomic−−−−→ atomic(e)

(Atomic)

e
SKIP−−→ e

(Skip)
e

ABORT−−−−→ err
(Abort)

Denotational semantics
⟦atomic⟧𝜉 = 𝜆e.{atomic(e) | atomic(e) def}

∪ {err | atomic(e) undef}

⟦SKIP⟧𝜉 = 𝜆e.{e}
⟦ABORT⟧𝜉 = 𝜆e.{err}

Basic definitions for denotational semantics
⟦S ⟧ : ΓS → 𝔇 Variable(V) X Y Z . . .

Domain 𝔇 = E→ 𝔇p where: 𝔇p = P¬∅ (E ∪ {err} ∪ {div})
Semantic Environment(ΓS) 𝜉 : V→ 𝔇 𝜉 := ∅ | 𝜉 [X ↦→ d]
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Divergence in Sequential Composition

Example
addid : 0 + a⇝ a addcom : a + b⇝ b + a 3 + 0

addcom ; addid 3

repeat(SKIP) ; addcom diverges

addcom ; repeat(SKIP) diverges

• We need to consider divergence as a possible outcome when providing the
semantics of the sequential composition.
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Big-Step Operational Semantics - Handling of Divergence

Prior operational semantics does not handle divergence
It takes the form of:

e
s−→ r

where r can be either an expression or an error.

Our extended operational semantics handles divergence
We extend the big-step operational semantics to include divergence as a
possible outcome, encoded using coinduction, taking the form of:

e
s−→
∞
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Semantics by Examples - Sequential Composition

Example
addid : 0 + a⇝ a addcom : a + b⇝ b + a 3 + 0

addcom ; addid 3

Operational semantics
e
s1−→ e1 e1

s2−−→ e2

e
s1 ; s2−−−−→ e2

(SC)

e
s1−→ err

e
s1 ; s2−−−−→ err

(SCErr(1))
e
s1−→ e1 e1

s2−−→ err

e
s1 ; s2−−−−→ err

(SCErr(2))

e
s1−−→
∞

e
s1 ; s2−−−−→
∞

(SCDiv(1))
e
s1−→ e1 e1

s2−−→
∞

e
s1 ; s2−−−−→
∞

(SCDiv(2))

Denotational semantics
⟦s1 ; s2⟧𝜉

= 𝜆e.
⋃{⟦s2⟧𝜉 (x) | x ∈ ⟦s1⟧𝜉 (e) ∩ E}

∪ {x | x ∈ ⟦s1⟧𝜉 (e) ∩ {div, err}}
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The Need of A Fixed-Point Operator

Example - Repeat
repeat(s) = 𝜇X .try(s ; X ) addid : 0 + a⇝ a

+

+

+

30

0

0 repeat (addid )
3

Example - Top Down
topDown(s) = 𝜇X .s <+ one(X ) addid : 0 + a⇝ a

+

+

+

30

0

1 topDown(addid )
+

+

30

1

• We need make sure the fixed point is the least fixed point and thus the
denotational semantics are monotonic and continuous functions.
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Power Domain, Domain and Ordering

The Plotkin powerdomain
𝔇p = P¬∅ (E ∪ {err} ∪ {div})

The domain
𝔇 = E→ 𝔇p

Egli-Milner ordering
A ⪯ B ⇐⇒ (∀x ∈ A. ∃y ∈ B. x ⪯ y) ∧ (∀y ∈ B. ∃x ∈ A. x ⪯ y)

Porcupine ordering
A ⪯ B ⇐⇒ A = B ∨ ((⊥ ∈ A) ∧ A\{⊥} ⊆ B)

• Defining denotational semantics in such a domain can
ensure the semantics to be monotone and continuous.
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A 2500BC Porcupine

Photo by Michel Steuwer
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Semantics by Examples - Fixed Point Operator

Example - Top Down
topDown(s) = 𝜇X .s <+ one(X ) addid : 0 + a⇝ a

+

+

+

30

0

1 topDown(addid )
+

+

30

1

Example - Repeat
repeat(s) = 𝜇X .try(s ; X ) addid : 0 + a⇝ a

+

+

+

30

0

0 repeat (addid )
3

Operational semantics
e

s [X :=𝜇X .s]
−−−−−−−−→ e1

e
𝜇X .s
−−−→ e1

(FP)

e
s [X :=𝜇X .s]
−−−−−−−−→ err

e
𝜇X .s
−−−→ err

(FPErr)
e

s [X :=𝜇X .s]
−−−−−−−−→

∞

e
𝜇X .s
−−−→
∞

(FPDiv)

Denotational semantics
⟦X⟧𝜉 = 𝜉X

⟦𝜇X .s⟧𝜉 = 𝜇X.⟦s⟧(𝜉 [X ↦→ X])
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We Show the Denotational and Operational Semantics are Equivalent

Closed strategy
fv (s♣) = ∅

Computational soundness
e
s♣−−→ e′

e′ ∈ ⟦s♣⟧𝜉e

e
s♣−−→
∞

div ∈ ⟦s♣⟧𝜉e

Computational adequacy
e′ ∈ ⟦s♣⟧𝜉e ∧ e′ ≠ div

e
s♣−−→ e′

div ∈ ⟦s♣⟧𝜉e

e
s♣−−→
∞

Semantics equivalence
⟦s♣⟧𝜉e = {r | e s♣−→ r} ∪ {div | e s♣−→

∞
}

Mechanised proofs are available at: https://github.com/XYUnknown/Shoggoth
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Location Based Weakest
Precondition Calculus



Strategies Can Go Wrong

Errors
addid : 0 + a⇝ a addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a

6 + 3
addid err

+

36

one(addcom )
err

0 + 3
addcom ;multcom err 0 + 3

(addid<+addcom ) ; addcom
err

Divergence
e

repeat (SKIP)
div 6 + 3

repeat (addcom )
div

Undesired result
We want 3 + 0 0 + 3

addid<+addcom 3

Observations
• Bad strategies can never lead to any successful execution.

• Good strategies may be unsuccessfully executed on some inputs.
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Introduction of Weakest Precondition Calculus

Motivations
• To characterise good and bad strategies.

• To characterise successful and unsuccessful executions.

• To detect bad strategies and unsuccessful executions, by:
• specifying a property to be satisfied after the execution of a strategy and calculating

the set expressions that can lead to a result satisfying such a property.

Background: weakest precondition
Given a program S and a postcondition Q, a weakest precondition is a predicate
Pw such that for any precondition P:

{P}S{Q} ⇔ (P ⇒ Pw)
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Location Based Weakest Precondition Calculus for System S

The challenge of traversals
We have strategies that can traverse the syntax tree and control at what
location in the syntax tree to apply a strategy — we need a notion of “location”
in our formulae.

Our solution
We introduce the location as a path in the syntax tree into our formulae.
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Weakest Must Succeed Precondition

Definition
wp𝜁⊩s@l (P)

A weakest must succeed precondition is the set of those expressions that, by applying
strategy s at location l under the logic environment 𝜁 , will be successfully transformed
into expressions satisfying P.
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Weakest May Error Precondition

Definition
wp↑

𝜁⊩s@l (P)

A weakest may error precondition is the set of those expressions that, by applying
strategy s at location l under the logic environment 𝜁 , will be successfully transformed
into expressions satisfying P, or result in error.
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Is A Strategy Well-Composed?

Example
addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a addcom ; multcom (Bad?)

Wp for atomic strategy
wp𝜁⊩atomic@l (P ) = {e | update(l, e, ⟦atomic⟧∅(lookup(l, e) ) ) ⊆ P}

wp↑
𝜁⊩atomic@l (P ) = {e | update(l, e, ⟦atomic⟧∅(lookup(l, e) ) ) ⊆ P ∪ {err}}

Wp of sequential composition
wp𝜁⊩s ; t@l (P) = wp𝜁⊩s@l (wp𝜁⊩t@l (P)) wp↑

𝜁⊩s ; t@l (P) = wp
↑
𝜁⊩s@l (wp

↑
𝜁⊩t@l (P))

Checking invalid composition
wp𝜁⊩addcom@𝜖 (E) = {e | e =

+

nm
} wp𝜁⊩multcom@𝜖 (E) = {e | e =

∗

nm
}

wp𝜁⊩addcom ;multcom@𝜖 (E) = ∅ (Bad!)
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Does A Strategy Diverge? (0)

Does the given strategy diverge, i.e., does not lead to any successful execution?

Example
repeat(SKIP) Bad?

Wp of fixed point operator
wp𝜁⊩𝜇X .s@l (P) = [LFP𝒳 : Δ] l P wp↑

𝜁⊩𝜇X .s@l (P) = [LFP𝒴 : Δ] l P

Where:

Δ =


𝒳 l P = wp𝜁 [ (X , · ) ↦→𝒳 , (X ,↑) ↦→𝒴 ]⊩s@l (P)
𝒴 l P = wp↑

𝜁 [ (X , · ) ↦→𝒳 , (X ,↑) ↦→𝒴 ]⊩s@l (P)

wp𝜁⊩X@l (P) = 𝜁 (X , ·) l P (where 𝜁 (X , ·) def.)

wp↑
𝜁⊩X@l (P) = 𝜁 (X , ↑) l P (where 𝜁 (X , ↑) def.)
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Does A Strategy Diverge? (1)

Example
repeat(SKIP) Bad?

Wp for repeat
wp𝜁⊩repeat (s)@l (P) = wp↑𝜁⊩repeat (s)@l (P) = [LFP𝒳 : Δ] l P

where Δ is the fixed-point equation

𝒳(l) (P) = wp𝜁 [ (X , · ) ↦→𝒳 , (X ,↑) ↦→𝒳]⊩s@l (𝒳 l P)
∪ (P ∩ wp↑

𝜁 [ (X , · ) ↦→𝒳 , (X ,↑) ↦→𝒳]⊩s@l (𝒳 l P))

Checking divergence
wprepeat(SKIP)@𝜖 𝜁 (E) = ∅ Bad!

Shoggoth: A Formal Foundation for Strategic Rewriting 29



Good and Bad Strategies, Successful and Unsuccessful Executions

Good strategies
A strategy s is good iff for a given
postcondition P:

wp𝜁⊩s@l (P) ≠ ∅

Bad strategies
A strategy s is bad iff for a given
postcondition P:

wp𝜁⊩s@l (P) = ∅

Successful executions
An execution of a good strategy s, on an
input expression e is successful iff for a
given postcondition P:

e ∈ wp𝜁⊩s@l (P) (where: wp𝜁⊩s@l (P) ≠ ∅)

Unsuccessful executions
An execution of a good strategy s on an
input expression e is unsuccessful iff for a
given postcondition P:

e ∉ wp𝜁⊩s@l (P) (where: wp𝜁⊩s@l (P) ≠ ∅)
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The Weakest Precondition Calculus is Sound w.r.t. the Denotational Semantics

Soundness theorems
∀X l P . 𝜁 (X , ·) l P = {e | 𝜉 (X ) (⋔l e)�l e ⊆ P}

∧𝜁 (X , ↑) l P = {e | 𝜉 (X ) (⋔l e)�l e ⊆ P ∪ {err}}

wp𝜁⊩s@l (P) = {e | (⟦s⟧𝜉 (⋔l e))�l e ⊆ P}

(Weakest Must Succeed Precondition)

∀X l P . 𝜁 (X , ·) l P = {e | 𝜉 (X ) (⋔l e)�l e ⊆ P}
∧𝜁 (X , ↑) l P = {e | 𝜉 (X ) (⋔l e)�l e ⊆ P ∪ {err}}

wp↑
𝜁⊩s@l (P) = {e | (⟦s⟧𝜉 (⋔l e))�l e ⊆ P ∪ {err}}

(Weakest May Error Precondition)

Mechanised proofs are available at: https://github.com/XYUnknown/Shoggoth
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Conclusion and Future Work



Our paper features
• Formal semantics of System S and equivalence proofs of the denotational

semantics and big-step operational semantics.

• The formalised weakest precondition calculus for System S, soundness
proofs and more case studies demonstrating the usage of the weakest
precondition calculus for reasoning about the execution of strategies.

• All formalised semantics and calculus as well as proofs are mechanised in
Isabelle/HOL. (Artifact: https://doi.org/10.5281/zenodo.10125602)

Future works
• Rewriting expressions represented in other forms such as graphs?

• Using weakest precondition calculus for automatic reasoning about the
execution of strategies?
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It was a terrible, indescribable thing vaster than any subway train—a shapeless congeries
of protoplasmic bubbles, faintly self-luminous, and with myriads of temporary eyes forming
and unforming as pustules of greenish light all over the tunnel-filling front that bore down
upon us . . . And at last we remembered that the daemoniac shoggoths — given life, thought,
and plastic organ patterns solely by the Old Ones, and having no language save that which
the dot-groups expressed — had likewise no voice save the imitated accents of their bygone
masters. — H. P. Lovecraft ”From the Mountains of Madness”

Thank you (ˆwˆ)

Xueying Qin [xueying.qin@ed.ac.uk]
[https://xyunknown.github.io]
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