
Shoggoth:
A Formal Foundation
for Strategic Rewriting

Xueying Qin (秦雪莹) 1

Liam O’Connor1, Rob van Glabbeek1 3,
Peter Höfner2, Ohad Kammar1, Michel Steuwer1 4

1 The University of Edinburgh 2 Australian National University

3 UNSW 4 Technische Universität Berlin

January 17, 2024

Shoggoth and Strategic Rewriting

Shoggoth
A blob with a lot of eyes. It is a
shape-shifter, making the sound
‘Tekeli-li! Tekeli-li!’ which can no
longer be understood by
anyone. [Lovecraft, 1931]

Strategic rewriting
A language performs syntactic
transformation, which is lack of
formal understanding.

Shoggoth: A Formal Foundation for Strategic Rewriting 1

Introduction

Overview of Strategic Rewriting Languages

System S [Visser and el Abidine Benaissa, 1998], the core calculus of strategic
rewriting languages like ELEVATE [Hagedorn et al., 2020], Stratego [Visser, 2001] and
Strafunski [Kaiser and Lämmel, 2009] has atomic strategies and composed strategies.

Atomic strategy
An atomic strategy is a rewrite rule:

addcom : a + b⇝ b + a addid : 0 + a⇝ a

multcom : a ∗ b⇝ b ∗ a
mapFusion : map f (map g xs) ⇝ map (f ◦ g) xs

Composed strategy
addcom ; addid addcom <+ multcom
repeat(mapFusion)

Strategy combinator
Strategy combinators compose
strategies together and controls the
application of atomic strategies:

s1 ; s2 sequential composition, apply s1 then s2
s1 <+ s2 left choice, if fail to apply s1 then s2
repeat(s) keep applying s until inapplicable

Shoggoth: A Formal Foundation for Strategic Rewriting 3

Importance of Strategic Rewriting Languages

• Strategic rewriting languages provide programmers with combinators and generic
traversals that allow them to:

• control the application of rewrite rules
• reuse rewrite rules

• Many application areas: program optimisation (ELEVATE [Hagedorn et al., 2020]),
writing interpreter/compiler for DSLs (Spoofax/Stratego [Visser, 2001]) etc.

Shoggoth: A Formal Foundation for Strategic Rewriting 4

Importance of A Formal Understanding of Strategic Rewriting Languages

Strategies can go wrong
• Result in error - an atomic strategy is not defined for certain expressions

or strategies are not well composed, for example: addcom ; multcom
• Do not terminate - for example: repeat(SKIP)

• Do not rewrite an expression into desired form

Therefore, we would like a formal understanding of these strategies and a framework
that allows us to formally reason about the execution of these strategies.

Shoggoth: A Formal Foundation for Strategic Rewriting 5

Existing Formal Works

• Big-step operational semantics of System S without modelling divergence
[Visser and el Abidine Benaissa, 1998].

• Weakest preconditional calculus for System S using computational tree logic
(CTL) [Kieburtz, 2001]. It has following issues:

• not expressive enough to reason about nondeterminism in traversals
• problematic fixed-point operator construction
• soundness of the calculus is not proven

Shoggoth: A Formal Foundation for Strategic Rewriting 6

Our Contributions

• Providing the formal semantics of System S, including both denotational and
operational models.

• Featuring nondeterminism, errors, and divergence.
• Proving these two semantics models are equivalent.

• Providing the weakest precondition calculus for the strategic rewriting language.
• Proving its soundness w.r.t. the denotational semantics.

• Demonstrating how to use the weakest precondition calculus to prove properties
of strategic rewriting.

Shoggoth: A Formal Foundation for Strategic Rewriting 7

Syntax of System S

Introduction to System S and Expressions to be Rewritten

System S
System S [Visser and el Abidine Benaissa, 1998] contains atomic strategies
(rewrite rules), strategy combinators which compose strategies and traversals
that traverse the expression AST.

Expression
The expressions being rewritten by strategies are in the form of:

Expressions(E) e := Leaf |
n
ee

Shoggoth: A Formal Foundation for Strategic Rewriting 9

Syntax of Strategies

Strategy
Strategy (S) s := SKIP (Always succeeds) | ABORT (Always results in error)

| atomic (Atomic strategy)

| X (Variable)

| s1 ; s2 (Sequential composition)

| s1 <+ s2 (Left choice)

| s1 <+> t2 (Nondeterministic choice)

| one(s) (Apply s to one child, nondeterministic)

| some(s) (Apply s to as many children as possible, nondeterministic)

| all(s) (Apply s to all children, nondeterministic)

| 𝜇X .s (Fixed-point operator)

Shoggoth: A Formal Foundation for Strategic Rewriting 10

Semantics of System S

Semantics by Examples - Skip, Abort and Atomic

Examples
addcom : a + b⇝ b + a 1 + 3

addcom 3 + 1 1 + 3 SKIP 1 + 3 1 + 3 ABORT err

Operational semantics

e
atomic−−−−→ atomic(e)

(Atomic)

e
SKIP−−→ e

(Skip)
e

ABORT−−−−→ err
(Abort)

Denotational semantics
⟦atomic⟧𝜉 = 𝜆e.{atomic(e) | atomic(e) def}

∪ {err | atomic(e) undef}

⟦SKIP⟧𝜉 = 𝜆e.{e}
⟦ABORT⟧𝜉 = 𝜆e.{err}

Basic definitions for denotational semantics
⟦S ⟧ : ΓS → 𝔇 Variable(V) X Y Z . . .

Domain 𝔇 = E→ 𝔇p where: 𝔇p = P¬∅ (E ∪ {err} ∪ {div})
Semantic Environment(ΓS) 𝜉 : V→ 𝔇 𝜉 := ∅ | 𝜉 [X ↦→ d]

Shoggoth: A Formal Foundation for Strategic Rewriting 12

Divergence in Sequential Composition

Example
addid : 0 + a⇝ a addcom : a + b⇝ b + a 3 + 0

addcom ; addid 3

repeat(SKIP) ; addcom diverges

addcom ; repeat(SKIP) diverges

• We need to consider divergence as a possible outcome when providing the
semantics of the sequential composition.

Shoggoth: A Formal Foundation for Strategic Rewriting 13

Big-Step Operational Semantics - Handling of Divergence

Prior operational semantics does not handle divergence
It takes the form of:

e
s−→ r

where r can be either an expression or an error.

Our extended operational semantics handles divergence
We extend the big-step operational semantics to include divergence as a
possible outcome, encoded using coinduction, taking the form of:

e
s−→
∞

Shoggoth: A Formal Foundation for Strategic Rewriting 14

Semantics by Examples - Sequential Composition

Example
addid : 0 + a⇝ a addcom : a + b⇝ b + a 3 + 0

addcom ; addid 3

Operational semantics
e
s1−→ e1 e1

s2−−→ e2

e
s1 ; s2−−−−→ e2

(SC)

e
s1−→ err

e
s1 ; s2−−−−→ err

(SCErr(1))
e
s1−→ e1 e1

s2−−→ err

e
s1 ; s2−−−−→ err

(SCErr(2))

e
s1−−→
∞

e
s1 ; s2−−−−→
∞

(SCDiv(1))
e
s1−→ e1 e1

s2−−→
∞

e
s1 ; s2−−−−→
∞

(SCDiv(2))

Denotational semantics
⟦s1 ; s2⟧𝜉

= 𝜆e.
⋃{⟦s2⟧𝜉 (x) | x ∈ ⟦s1⟧𝜉 (e) ∩ E}

∪ {x | x ∈ ⟦s1⟧𝜉 (e) ∩ {div, err}}

Shoggoth: A Formal Foundation for Strategic Rewriting 15

The Need of A Fixed-Point Operator

Example - Repeat
repeat(s) = 𝜇X .try(s ; X) addid : 0 + a⇝ a

+

+

+

30

0

0 repeat (addid)
3

Example - Top Down
topDown(s) = 𝜇X .s <+ one(X) addid : 0 + a⇝ a

+

+

+

30

0

1 topDown(addid)
+

+

30

1

• We need make sure the fixed point is the least fixed point and thus the
denotational semantics are monotonic and continuous functions.

Shoggoth: A Formal Foundation for Strategic Rewriting 16

Power Domain, Domain and Ordering

The Plotkin powerdomain
𝔇p = P¬∅ (E ∪ {err} ∪ {div})

The domain
𝔇 = E→ 𝔇p

Egli-Milner ordering
A ⪯ B ⇐⇒ (∀x ∈ A. ∃y ∈ B. x ⪯ y) ∧ (∀y ∈ B. ∃x ∈ A. x ⪯ y)

Porcupine ordering
A ⪯ B ⇐⇒ A = B ∨ ((⊥ ∈ A) ∧ A\{⊥} ⊆ B)

• Defining denotational semantics in such a domain can
ensure the semantics to be monotone and continuous.

Shoggoth: A Formal Foundation for Strategic Rewriting 17

A 2500BC Porcupine

Photo by Michel Steuwer

Shoggoth: A Formal Foundation for Strategic Rewriting 18

Semantics by Examples - Fixed Point Operator

Example - Top Down
topDown(s) = 𝜇X .s <+ one(X) addid : 0 + a⇝ a

+

+

+

30

0

1 topDown(addid)
+

+

30

1

Example - Repeat
repeat(s) = 𝜇X .try(s ; X) addid : 0 + a⇝ a

+

+

+

30

0

0 repeat (addid)
3

Operational semantics
e

s [X :=𝜇X .s]
−−−−−−−−→ e1

e
𝜇X .s
−−−→ e1

(FP)

e
s [X :=𝜇X .s]
−−−−−−−−→ err

e
𝜇X .s
−−−→ err

(FPErr)
e

s [X :=𝜇X .s]
−−−−−−−−→

∞

e
𝜇X .s
−−−→
∞

(FPDiv)

Denotational semantics
⟦X⟧𝜉 = 𝜉X

⟦𝜇X .s⟧𝜉 = 𝜇X.⟦s⟧(𝜉 [X ↦→ X])

Shoggoth: A Formal Foundation for Strategic Rewriting 19

We Show the Denotational and Operational Semantics are Equivalent

Closed strategy
fv (s♣) = ∅

Computational soundness
e
s♣−−→ e′

e′ ∈ ⟦s♣⟧𝜉e

e
s♣−−→
∞

div ∈ ⟦s♣⟧𝜉e

Computational adequacy
e′ ∈ ⟦s♣⟧𝜉e ∧ e′ ≠ div

e
s♣−−→ e′

div ∈ ⟦s♣⟧𝜉e

e
s♣−−→
∞

Semantics equivalence
⟦s♣⟧𝜉e = {r | e s♣−→ r} ∪ {div | e s♣−→

∞
}

Mechanised proofs are available at: https://github.com/XYUnknown/Shoggoth

Shoggoth: A Formal Foundation for Strategic Rewriting 20

Location Based Weakest
Precondition Calculus

Strategies Can Go Wrong

Errors
addid : 0 + a⇝ a addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a

6 + 3
addid err

+

36

one(addcom)
err

0 + 3
addcom ;multcom err 0 + 3

(addid<+addcom) ; addcom
err

Divergence
e

repeat (SKIP)
div 6 + 3

repeat (addcom)
div

Undesired result
We want 3 + 0 0 + 3

addid<+addcom 3

Observations
• Bad strategies can never lead to any successful execution.

• Good strategies may be unsuccessfully executed on some inputs.

Shoggoth: A Formal Foundation for Strategic Rewriting 22

Introduction of Weakest Precondition Calculus

Motivations
• To characterise good and bad strategies.

• To characterise successful and unsuccessful executions.

• To detect bad strategies and unsuccessful executions, by:
• specifying a property to be satisfied after the execution of a strategy and calculating

the set expressions that can lead to a result satisfying such a property.

Background: weakest precondition
Given a program S and a postcondition Q, a weakest precondition is a predicate
Pw such that for any precondition P:

{P}S{Q} ⇔ (P ⇒ Pw)

Shoggoth: A Formal Foundation for Strategic Rewriting 23

Location Based Weakest Precondition Calculus for System S

The challenge of traversals
We have strategies that can traverse the syntax tree and control at what
location in the syntax tree to apply a strategy — we need a notion of “location”
in our formulae.

Our solution
We introduce the location as a path in the syntax tree into our formulae.

Shoggoth: A Formal Foundation for Strategic Rewriting 24

Weakest Must Succeed Precondition

Definition
wp𝜁⊩s@l (P)

A weakest must succeed precondition is the set of those expressions that, by applying
strategy s at location l under the logic environment 𝜁 , will be successfully transformed
into expressions satisfying P.

Shoggoth: A Formal Foundation for Strategic Rewriting 25

Weakest May Error Precondition

Definition
wp↑

𝜁⊩s@l (P)

A weakest may error precondition is the set of those expressions that, by applying
strategy s at location l under the logic environment 𝜁 , will be successfully transformed
into expressions satisfying P, or result in error.

Shoggoth: A Formal Foundation for Strategic Rewriting 26

Is A Strategy Well-Composed?

Example
addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a addcom ; multcom (Bad?)

Wp for atomic strategy
wp𝜁⊩atomic@l (P) = {e | update(l, e, ⟦atomic⟧∅(lookup(l, e))) ⊆ P}

wp↑
𝜁⊩atomic@l (P) = {e | update(l, e, ⟦atomic⟧∅(lookup(l, e))) ⊆ P ∪ {err}}

Wp of sequential composition
wp𝜁⊩s ; t@l (P) = wp𝜁⊩s@l (wp𝜁⊩t@l (P)) wp↑

𝜁⊩s ; t@l (P) = wp
↑
𝜁⊩s@l (wp

↑
𝜁⊩t@l (P))

Checking invalid composition
wp𝜁⊩addcom@𝜖 (E) = {e | e =

+

nm
} wp𝜁⊩multcom@𝜖 (E) = {e | e =

∗

nm
}

wp𝜁⊩addcom ;multcom@𝜖 (E) = ∅ (Bad!)

Shoggoth: A Formal Foundation for Strategic Rewriting 27

Does A Strategy Diverge? (0)

Does the given strategy diverge, i.e., does not lead to any successful execution?

Example
repeat(SKIP) Bad?

Wp of fixed point operator
wp𝜁⊩𝜇X .s@l (P) = [LFP𝒳 : Δ] l P wp↑

𝜁⊩𝜇X .s@l (P) = [LFP𝒴 : Δ] l P

Where:

Δ =


𝒳 l P = wp𝜁 [(X , ·) ↦→𝒳 , (X ,↑) ↦→𝒴]⊩s@l (P)
𝒴 l P = wp↑

𝜁 [(X , ·) ↦→𝒳 , (X ,↑) ↦→𝒴]⊩s@l (P)

wp𝜁⊩X@l (P) = 𝜁 (X , ·) l P (where 𝜁 (X , ·) def.)

wp↑
𝜁⊩X@l (P) = 𝜁 (X , ↑) l P (where 𝜁 (X , ↑) def.)

Shoggoth: A Formal Foundation for Strategic Rewriting 28

Does A Strategy Diverge? (1)

Example
repeat(SKIP) Bad?

Wp for repeat
wp𝜁⊩repeat (s)@l (P) = wp↑𝜁⊩repeat (s)@l (P) = [LFP𝒳 : Δ] l P

where Δ is the fixed-point equation

𝒳(l) (P) = wp𝜁 [(X , ·) ↦→𝒳 , (X ,↑) ↦→𝒳]⊩s@l (𝒳 l P)
∪ (P ∩ wp↑

𝜁 [(X , ·) ↦→𝒳 , (X ,↑) ↦→𝒳]⊩s@l (𝒳 l P))

Checking divergence
wprepeat(SKIP)@𝜖 𝜁 (E) = ∅ Bad!

Shoggoth: A Formal Foundation for Strategic Rewriting 29

Good and Bad Strategies, Successful and Unsuccessful Executions

Good strategies
A strategy s is good iff for a given
postcondition P:

wp𝜁⊩s@l (P) ≠ ∅

Bad strategies
A strategy s is bad iff for a given
postcondition P:

wp𝜁⊩s@l (P) = ∅

Successful executions
An execution of a good strategy s, on an
input expression e is successful iff for a
given postcondition P:

e ∈ wp𝜁⊩s@l (P) (where: wp𝜁⊩s@l (P) ≠ ∅)

Unsuccessful executions
An execution of a good strategy s on an
input expression e is unsuccessful iff for a
given postcondition P:

e ∉ wp𝜁⊩s@l (P) (where: wp𝜁⊩s@l (P) ≠ ∅)

Shoggoth: A Formal Foundation for Strategic Rewriting 30

The Weakest Precondition Calculus is Sound w.r.t. the Denotational Semantics

Soundness theorems
∀X l P . 𝜁 (X , ·) l P = {e | 𝜉 (X) (⋔l e)�l e ⊆ P}

∧𝜁 (X , ↑) l P = {e | 𝜉 (X) (⋔l e)�l e ⊆ P ∪ {err}}

wp𝜁⊩s@l (P) = {e | (⟦s⟧𝜉 (⋔l e))�l e ⊆ P}

(Weakest Must Succeed Precondition)

∀X l P . 𝜁 (X , ·) l P = {e | 𝜉 (X) (⋔l e)�l e ⊆ P}
∧𝜁 (X , ↑) l P = {e | 𝜉 (X) (⋔l e)�l e ⊆ P ∪ {err}}

wp↑
𝜁⊩s@l (P) = {e | (⟦s⟧𝜉 (⋔l e))�l e ⊆ P ∪ {err}}

(Weakest May Error Precondition)

Mechanised proofs are available at: https://github.com/XYUnknown/Shoggoth
Shoggoth: A Formal Foundation for Strategic Rewriting 31

Conclusion and Future Work

Our paper features
• Formal semantics of System S and equivalence proofs of the denotational

semantics and big-step operational semantics.

• The formalised weakest precondition calculus for System S, soundness
proofs and more case studies demonstrating the usage of the weakest
precondition calculus for reasoning about the execution of strategies.

• All formalised semantics and calculus as well as proofs are mechanised in
Isabelle/HOL. (Artifact: https://doi.org/10.5281/zenodo.10125602)

Future works
• Rewriting expressions represented in other forms such as graphs?

• Using weakest precondition calculus for automatic reasoning about the
execution of strategies?

Shoggoth: A Formal Foundation for Strategic Rewriting 33

It was a terrible, indescribable thing vaster than any subway train—a shapeless congeries
of protoplasmic bubbles, faintly self-luminous, and with myriads of temporary eyes forming
and unforming as pustules of greenish light all over the tunnel-filling front that bore down
upon us . . . And at last we remembered that the daemoniac shoggoths — given life, thought,
and plastic organ patterns solely by the Old Ones, and having no language save that which
the dot-groups expressed — had likewise no voice save the imitated accents of their bygone
masters. — H. P. Lovecraft ”From the Mountains of Madness”

Thank you (ˆwˆ)

Xueying Qin [xueying.qin@ed.ac.uk]
[https://xyunknown.github.io]

Shoggoth: A Formal Foundation for Strategic Rewriting 33

Hagedorn, B., Lenfers, J., Kœhler, T., Qin, X., Gorlatch, S., and Steuwer, M. (2020).
Achieving high-performance the functional way: A functional pearl on
expressing high-performance optimizations as rewrite strategies.
Proc. ACM Program. Lang., 4(ICFP).

Kaiser, M. and Lämmel, R. (2009).
An isabelle/hol-based model of stratego-like traversal strategies.
In Proceedings of the 11th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, PPDP ’09, page 93–104, New York, NY, USA. Association
for Computing Machinery.

Shoggoth: A Formal Foundation for Strategic Rewriting 34

Kieburtz, R. B. (2001).
A logic for rewriting strategies.
Electronic Notes in Theoretical Computer Science, 58(2):138–154.
STRATEGIES 2001, 4th International Workshop on Strategies in Automated Deduction -
Selected Papers (in connection with IJCAR 2001).

Lovecraft, H. P. (1931).
At the mountains of madness.

Visser, E. (2001).
Stratego: A language for program transformation based on rewriting
strategies system description of stratego 0.5.
In Middeldorp, A., editor, Rewriting Techniques and Applications, pages 357–361,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Shoggoth: A Formal Foundation for Strategic Rewriting 35

Visser, E. and el Abidine Benaissa, Z. (1998).
A core language for rewriting.
Electronic Notes in Theoretical Computer Science, 15:422–441.
International Workshop on Rewriting Logic and its Applications.

Shoggoth: A Formal Foundation for Strategic Rewriting 36

	0. Introduction
	1. Syntax of System S
	2. Semantics of System S
	3. Location Based Weakest Precondition Calculus
	4. Conclusion and Future Work

