Shoggoth:

A Formal Foundation
for Strategic Rewriting

Xueying Qin (EE=)

Liam O’Connor’, Rob van Glabbeek! 3,

Peter Héfner?, Ohad Kammar', Michel Steuwer' 4
! The University of Edinburgh 2 Australian National University

3 UNSW 4 Technische Universitat Berlin

January 17, 2024

Shoggoth and Strategic Rewriting
Shoggoth
%, Snoggoin N

A blob with a lot of eyes. It is a

shape-shifter, making the sound
‘Tekeli-Ii! Tekeli-li" which can no
longer be understood by

anyone. [Lovecraft, 1931]

Strategic rewriting

A language performs syntactic

transformation, which is lack of
formal understanding.

Shoggoth: A Formal Foundation for Strategic Rewriting 1

Infroduction

Overview of Strategic Rewriting Languages

System S [Visser and el Abidine Benaissa, 1998], the core calculus of strategic
rewriting languages like ELEVATE [Hagedorn et al., 2020], Stratego [Visser, 2001] and
Strafunski [Kaiser and Lammel, 2009] has atomic strategies and composed strategies.

Atomic strate
Strategy combinator NN
(

An atomic strategy is a rewrite rule:

Strategy combinators compose

addcom : a+b~>b+a addig:0+a~a strategies together and controls the

multcom : ax b~ b a application of atomic strategies:

mapFusion : map f (map g xs) ~» map (f o g) xs

s1 3 52 sequential composition, apply s then s

Composed Sffdfegy s1 <+ sy left choice, if fail to apply sy then s,

addcom ; addy addcom <+ multcom repeat(s) keep applying s until inapplicable

repeat(mapFusion) K

Shoggoth: A Formal Foundation for Strategic Rewriting 3

Importance of Strategic Rewriting Languages

e Strategic rewriting languages provide programmers with combinators and generic
traversals that allow them to:
e control the application of rewrite rules
e reuse rewrite rules
e Many application areas: program optimisation (ELEVATE [Hagedorn et al., 2020]),
writing interpreter/compiler for DSLs (Spoofax/Stratego [Visser, 2001]) etc.

Shoggoth: A Formal Foundation for Strategic Rewriting 4

Importance of A Formal Understanding of Strategic Rewriting Languages

Strategies can go wrong

e Result in error - an atomic strategy is not defined for certain expressions

or strategies are not well composed, for example: add.,,, ; multconm
e Do not terminate - for example: repeat(SKIP)

e Do not rewrite an expression into desired form

Therefore, we would like a formal understanding of these strategies and a framework
that allows us to formally reason about the execution of these strategies.

Shoggoth: A Formal Foundation for Strategic Rewriting 5

Existing Formal Works

e Big-step operational semantics of System S without modelling divergence
[Visser and el Abidine Benaissa, 1998].

o Weakest preconditional calculus for System S using computational tree logic
(CTL) [Kieburtz, 2001]. It has following issues:

e not expressive enough to reason about nondeterminism in traversals
e problematic fixed-point operator construction
e soundness of the calculus is not proven

Shoggoth: A Formal Foundation for Strategic Rewriting 6

Our Contributions

e Providing the formal semantics of System S, including both denotational and
operational models.

e Featuring nondeterminism, errors, and divergence.
e Proving these two semantics models are equivalent.

e Providing the weakest precondition calculus for the strategic rewriting language.

e Proving its soundness w.r.t. the denotational semantics.

e Demonstrating how to use the weakest precondition calculus to prove properties

of strategic rewriting.

Shoggoth: A Formal Foundation for Strategic Rewriting 7

Syntax of System S

Introduction to System S and Expressions to be Rewritten

System S [Visser and el Abidine Benaissa, 1998] contains atomic strategies

(rewrite rules), strategy combinators which compose strategies and traversals
that traverse the expression AST.

The expressions being rewritten by strategies are in the form of:

n

Expressions(E) e := Ledf | e/\e

Shoggoth: A Formal Foundation for Strategic Rewriting 9

Syntax of Strategies

- Strategy

Strategy(S) s := SKIP (Always succeeds) | ABORT (Always results in error)
| atomic (Atomic strategy)
| X (Variable)

~

| s+ s2 (Sequential composition)

| 51 <+ sp (Left choice)

| st <+> t (Nondeterministic choice)

| one(s) (Apply s to one child, nondeterministic)

| some(s) (Apply s to as many children as possible, nondeterministic)

| all(s) (Apply s to all children, nondeterministic)

| uX.s (Fixed-point operator)
-

Shoggoth: A Formal Foundation for Strategic Rewriting 10

Semantics of System S

Semantics by Examples - Skip, Abort and Atomic

(=2)

ddfom
addcom : a+b~ b+a 143 5% 341 1+3 3% 143 143 88K o

Operational semantics Denotational semantics

(Atomid [atomic||& = Ae.{atomic(e) | atomic(e) def}
e 25 atomic(e) U {err | atomic(e) undef}

[SKIP]¢ = 2e.{e}

P (Skip) W (Abort)
e—e e ——err [ABORT] & = Ae.{err}
Basic definitions for denotational semantics
[S]: Ts—D Variable(V) XY Z...
Domain D =E — Dp where: Dp = P_g(EU {err} U {div})
Semantic Environment(I's) ¢:V —> D &= 0| €é[Xd]

Shoggoth: A Formal Foundation for Strategic Rewriting 12

Divergence in Sequential Composition

addcom » addiy

addiy : 0 +a~ a add.om : a+ b~ b+a 3+0 -~~~ 3
repeat(SKIP) ; addcom diverges
addcom ;i repeat(SKIP) diverges

e We need to consider divergence as a possible outcome when providing the
semantics of the sequential composition.

Shoggoth: A Formal Foundation for Strategic Rewriting 13

Big-Step Operational Semantics - Handling of Divergence

Prior operational semantics does not handle divergence

It takes the form of:
S
e—r

where r can be either an expression or an error.

Our extended operational semantics handles divergence

We extend the big-step operational semantics to include divergence as a
possible outcome, encoded using coinduction, taking the form of:

S
e —
)

Shoggoth: A Formal Foundation for Strategic Rewriting 14

Semantics by Examples - Sequential Composition

(==)

ddcom ; add;
addiy : 0+a~a add.om :a+b~ b+a 340 S 3

- Operational semantics —

S 52
e—e g
. (SC)
e 5115 e2 . .
Denotational semantics
e err e e e 2, err [s 7 s2]¢
51152 (SCErr(l) S11 S (SCErr(2) = Je. U{[[Szﬂf(x) | X € [[51]]§(e) N E}
e——er e——emr U {x|x € [si]é(e) N {div, err}}
S S 52
e e— g &=
% (SCDiv(1)) T (SCDiv(2))
e —— e ——
N o J

Shoggoth: A Formal Foundation for Strategic Rewriting 15

The Need of A Fixed-Point Operator

Example - Repeat Example - Top Down

repeat(s) = uX.try(s ; X) addig:0+a~> a topDown(s) = uX.s <+ one(X) addig:0+a~»a
4 +
N 1/\ +
0 + repeat(add;q) + topDown(addig) — >\
L At 3 - RSV I I
0 + 0 /+\ A~
0/\3 0 3 0 3

e We need make sure the fixed point is the least fixed point and thus the

denotational semantics are monotonic and continuous functions.

Shoggoth: A Formal Foundation for Strategic Rewriting 16

Power Domain, Domain and Ordering

C The Plotkin powerdomain ? C The domain)

Dy = P-o(E U {err} U {div}) D=E— D,

C Egli-Milner ordering)

A<B & (VxeA dyeB. x<y)A(VyeB IxeA x=<y)

A<B & A=BVv((LeAAA{L}CB)

(Porcupine ordering)

e Defining denotational semantics in such a domain can

ensure the semantics to be monotone and continuous.
Shoggoth: A Formal Foundation for Strategic Rewriting 17

A 2500BC Porcupine

; Photo by Michel Steuwer

Shoggoth: A Formal Foundation for Strategic Rewriting 18

Semantics by Examples - Fixed Point Operator

Example - Top Down
topDown(s) = uX.s <+ one(X) addig:0+a~>a
+

— N +
1) + topDown(addiy) — >\

TN AR T
0 + A~

A~
0 3 0 3

- J

- Operational semantics —

s[X:=uX.s]
e

1
(FP)
e uX.s o

s[X:=uX.s]
s[X:=pX.s] e ——
e ———

(FPErr)

)

Example - Repeat

repeat(s) = uX.try(s i X) addig:0+a~sa

+
N
0 + repeat(addiq)
| R 3
0 +
P
0 3

Denotational semantics
[X]é =éx
[uX.s]€ = uX.[s](¢[X — X])

(FPDiv)
X.s HX.s

\ e 225 err e~ Y,

Shoggoth: A Formal Foundation for Strategic Rewriting

We Show the Denotational and Operational Semantics are Equivalent

Closed strategy
(fv(sa) =0)

Computational soundness Computational adequacy

N e % € €[sa]léene #dv div € [[sa]ée
e Tea S — e S*
e’ € [sa]ée div € [ss]ée e—e e

C Semantics equivalence)

[ss]ée={rle 2, r} U {div]e %}

Mechanised proofs are available at: https://github.com/XYUnknown/Shoggoth

Shoggoth: A Formal Foundation for Strategic Rewriting 20

Location Based Weakest
Precondition Calculus

Strategies Can Go Wrong

addig : 0+a~a addeom : a+ b~ b+a multeom : a* b~ bxa

addy + one(addcom)
6+3 «/v\/l\.) err PaN l\M/WEg’\H\,)

6 3
0 + 3 om: Multcom, 043 Saddig<+addeom) ; addeom,
Divergence
repeat(SKIP) | repeat(addeom)
e ~~ s diy 6 + 3 ~ s diy
Undesired result
add;g<+addcom
C We want 3+0 0+ 3~~~y 3

e Bad strategies can never lead to any successful execution.

—

e Good strategies may be unsuccessfully executed on some inputs.

Shoggoth: A Formal Foundation for Strategic Rewriting 22

Introduction of Weakest Precondition Calculus

e Motivations J ~

e To characterise good and bad strategies.

e To characterise successful and unsuccessful executions.

e To detect bad strategies and unsuccessful executions, by:

e specifying a property to be satisfied after the execution of a strategy and calculating

the set expressions that can lead to a result satisfying such a property.

N J

Background: weakest precondition

Given a program S and a postcondition Q, a weakest precondition is a predicate

P, such that for any precondition P:
{PY5{Q} & (P= Pu)

Shoggoth: A Formal Foundation for Strategic Rewriting 23

Location Based Weakest Precondition Calculus for System S

The challenge of traversals

We have strategies that can traverse the syntax tree and control at what

location in the syntax tree to apply a strategy — we need a notion of “location”
in our formulae.

(e)

We introduce the location as a path in the syntax tree into our formulae.

Shoggoth: A Formal Foundation for Strategic Rewriting 24

Weakest Must Succeed Precondition

C WP{u—s@I(P))

A weakest must succeed precondition is the set of those expressions that, by applying
strategy s at location [under the logic environment £, will be successfully transformed
into expressions satisfying P.

Shoggoth: A Formal Foundation for Strategic Rewriting 25

Weakest May Error Precondition

C nglrs@l(P))

A weakest may error precondition is the set of those expressions that, by applying
strategy s at location [under the logic environment £, will be successfully transformed
into expressions satisfying P, or result in error.

Shoggoth: A Formal Foundation for Strategic Rewriting 26

Is A Strategy Well-Composed?

(m

addecom :a+ b~ b+a multcom:axb~s bxa addcom 1 multcom (Bad?)

Wp for atomic strategy

Wb ratomicel (P) = {e | update(l, e, [atomic]|@ (lookup(l, e))) C P}

wpI,Htomic@,(P) = {e| update(l, e, [atomic] @ (lookup(l, e))) € PU {err}}

C Wp of sequential composition

whers: cel(P) = Wpzvsel(Wpg el (P)) WLy 01 (P) = WP i (WP o/ (P))
Checking invalid composition
+ k
WP addomee (B) = {ele= A~} Whsrmultomee (B) = {ele= ~}
m n m n

WP s - addeom i multcom®@e (E)=0 (Bad)

N/ D N N\

Shoggoth: A Formal Foundation for Strategic Rewriting 27

Does A Strategy Diverge? (0)

Does the given strategy diverge, i.e., does not lead to any successful execution?

< repeat(SKIP) Bad?)
s Wp of fixed point operator

wpsrux.sel(P) = [LFPZ - A]IP WPLWX'S@,(P) =[LFP¥% : A]IP
Where:

LIP =wpsi(x, -2, (X, rsol(P)

— wh!
YIP =wprix oz, oy irselP)
wpzixel(P) = £(X,-) P (where (X, -) def.)
WL, xor(P) = L(X, 1) IP (where £(X,1) def)

N

Shoggoth: A Formal Foundation for Strategic Rewriting 28

Does A Strategy Diverge? (1)
Wp for repeat

Wherrepeat(9)@l(P) = WPl oearoyor(P) = [LFPL 1 AT 1P

where A is the fixed-point equation

repeat(SKIP) Bad?)

L (N(P) = wpr[(x,)2 , (X,1)—2Jrsel (X | P)

2
U (PN WP (X, (X,T)Hzm@/(f[lp))

(Checking divergence)

Whrepeat(skpyee (E) = 0 Bad!

Shoggoth: A Formal Foundation for Strategic Rewriting 29

Good and Bad Strategies, Successful and Unsuccessful Executions

Good strategies Bad strategies

A strategy s is good iff for a given A strategy s is bad iff for a given
postcondition P: postcondition P:
WP{u—s@l(P) #0 WPgn—s@/(P) =0

Successful executions

An execution of a good strategy s, on an

Unsuccessful executions

An execution of a good strategy s on an
input expression e is successful iff for a input expression e is unsuccessful iff for a

given postcondition P: given postcondition P:

e € wpsrsel(P) (where: wpysei(P) # 0) e ¢ wphrsel(P) (where: wpsysei(P) # 0)

Shoggoth: A Formal Foundation for Strategic Rewriting 30

The Weakest Precondition Calculus is Sound w.r.t. the Denotational Semantics

e Soundness theorems N

VXIP.Z(X,) IP={e|&(X)(h)e) o= e C P}
ANX,) TP={e|léX)(hje) o= eC PU{err}}

WP{H@I(P) = {e| (|[5]]f(rh/ e)) 0=, eC P}

(Weakest Must Succeed Precondition)

VXIP.£(X,) I P={e|&(X)(4) O=) e C P}
AN(X, D) TP ={elé(X)(he) o= e C PU{err}}

WPI“H@/(P) ={el([slé(hie) o= e c PU{err}}

(Weakest May Error Precondition)

N J

Mechanised proofs are available at: https://github.com/XYUnknown/Shoggoth

Shoggoth: A Formal Foundation for Strategic Rewriting 31

Conclusion and Future Work

- Our paper features

e Formal semantics of System S and equivalence proofs of the denotational
semantics and big-step operational semantics.
e The formalised weakest precondition calculus for System S, soundness

proofs and more case studies demonstrating the usage of the weakest
precondition calculus for reasoning about the execution of strategies.

o All formalised semantics and calculus as well as proofs are mechanised in
Isabelle/HOL. (Artifact: https://doi.org/10.5281/zenodo.10125602)

\

e Rewriting expressions represented in other forms such as graphs?

e Using weakest precondition calculus for automatic reasoning about the
execution of strategies?

Shoggoth: A Formal Foundation for Strategic Rewriting

33

It was a terrible, indescribable thing vaster than any subway train—a shapeless congeries
of protoplasmic bubbles, faintly self-luminous, and with myriads of temporary eyes forming
and unforming as pustules of greenish light all over the tunnel-filling front that bore down
upon us ...And at last we remembered that the daemoniac shoggoths — given life, thought,
and plastic organ patterns solely by the Old Ones, and having no language save that which
the dot-groups expressed — had likewise no voice save the imitated accents of their bygone
masters. — H. P. Lovecraft "From the Mountains of Madness”

Thank you ("w")

Xueying Qin [xueying.qin@ed.ac.uk]
[https://xyunknown.github.io]

[§ Hagedorn, B., Lenfers, J., Keehler, T., Qin, X., Gorlatch, S., and Steuwer, M. (2020).
Achieving high-performance the functional way: A functional pearl on
expressing high-performance optimizations as rewrite strategies.

Proc. ACM Program. Lang., 4(ICFP).

[4 Kaiser, M. and Lammel, R. (2009).
An isabelle/hol-based model of stratego-like traversal strategies.
In Proceedings of the 1lth ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, PPDP "09, page 93-104, New York, NY, USA. Association
for Computing Machinery.

Shoggoth: A Formal Foundation for Strategic Rewriting

34

[1 Kieburtz, R. B. (2001).

A logic for rewriting strategies.
Electronic Notes in Theoretical Computer Science, 58(2):138-154.

STRATEGIES 2001, 4th International Workshop on Strategies in Automated Deduction -

Selected Papers (in connection with [JCAR 2001).
[§ Lovecraft, H. P. (1931).

At the mountains of madness.
[Visser, E. (2001).
Stratego: A language for program transformation based on rewriting

strategies system description of stratego 0.5.

In Middeldorp, A., editor, Rewriting Techniques and Applications, pages 357-36],

Berlin, Heidelberg. Springer Berlin Heidelberg.

Shoggoth: A Formal Foundation for Strategic Rewriting

35

@ Visser, E. and el Abidine Benaissa, Z. (1998).
A core language for rewriting.

Electronic Notes in Theoretical Computer Science, 15:422-441.

International Workshop on Rewriting Logic and its Applications.

Shoggoth: A Formal Foundation for Strategic Rewriting

36

	0. Introduction
	1. Syntax of System S
	2. Semantics of System S
	3. Location Based Weakest Precondition Calculus
	4. Conclusion and Future Work

