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Motivation

● The rewrite system of RISE (the successor of LIFT) transforms programs 
composed of high-level patterns into low-level code with equivalent 
functionality using rewrite rules

● Ensuring the correctness of these rules is important to ensure a program’s 
functionality is not altered after optimisation

● Therefore, we would like to develop mechanical proofs in Agda to show the 
correctness of these rules



Background

● RISE
○ High-level programming language which provides high performance and code portability
○ Primitive patterns: map, reduce, split, join, etc.
○ Rewrite rules encode optimisation strategies

● Curry-Howard Correspondence
○ Propositions as types
○ Proofs as programs
○ Simplification of proofs as evaluation of programs

● Agda
○ A dependently-typed programming language
○ Used as a proof assistant in this project



RISE Example - Matrix Multiplication

● Matrix multiplication expresses in RISE

matrixMultiplication A B = map fun (aRow => 

      map fun (bCol => 

      reduce add 0 (map mul (zip aRow bCol))

         ) (transpose B)

       ) A

● Rewrite rules can be applied for optimisation
○ map f → join ∘ map (map f) ∘ split n

○ map (f ∘ g) → map f ∘ map g

○ reduce f id ∘ map g → reduce (λ a b. f a (g b)) id

○ …



Semantics of RISE in Agda

● data -- The set of data types
○ Set in Agda

● nat -- Natural numbers
○ ℕ in Agda

● array -- An indexed collection
○ Vec in Agda

● function
○ The function type in Agda, written as (x : A) → B or A → B



Semantics of RISE in Agda - Natural Numbers

● Natural numbers:

-- The definition of natural numbers in Agda
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ

-- The definition of natural number addition in Agda
_+_ : ℕ → ℕ → ℕ
zero + m = m
suc n + m = suc (n + m)

-- The definition of natural number multiplication in Agda
_*_ : ℕ → ℕ → ℕ
zero * m = zero
suc n * m = m + n * m



Semantics of RISE in Agda - Indexed Collection

● An indexed collection:

-- Define an indexed collection
data Vec (A : Set) : ℕ → Set where
  [] : Vec A zero
  _::_ : {n : N} → A → Vec A n → Vec A (suc n)

-- The definition of vector concatenation
_++_ : {m n : ℕ} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)



Equality Reasoning for Rewrite Rules - Map-Fusion (1)

● A formal definition:
● We first need to define the primitive map:
●

-- The definition of primitive map
map : {n : ℕ} → {S T : Set} → (S → T) → Vec S n → Vec T n
map f [] = []
map f (x :: xs) = f x :: map f xs



Equality Reasoning for Rewrite Rules - Map-Fusion (2)

● The map-fusion rule:

fusion : {n : ℕ} → {S T R : Set} → (f : T → R) → (g : S → T) → (xs : Vec S n) →
    (map f ∘ map g) xs ≡ map (f ∘ g) xs

-- The proof of the map-fusion rule by induction
fusion f g [] = refl
fusion f g (x :: xs) = cong ((f ∘ g) x ::_) (fusion f ∘ g xs)

● refl is the reflexivity of equality
● Function cong is congruence, which is defined in Agda standard library as:

cong : {A B : Set} → ∀ (f : A → B) {x y} → x ≡ y → f x ≡ f y



Equality Reasoning for Rewrite Rules - Split-Join (1)
● A formal definition:
●

-- The definition of primitive split
split : (n : ℕ) → {m : ℕ} → {T : Set} → Vec T (m * n) → Vec (Vec T n) m
split n {zero} xs = []
split n {suc m} xs = take n {m * n} xs :: split n (drop n xs)

●
-- The definition of primitive join
join : {n m : ℕ} → {T : Set} → Vec (Vec T n) m → Vec T (m * n)
join [] = []
join (xs :: xs1) = xs ++ join xs1

● Where take and drop are:
take : (n : ℕ) → {m : ℕ} → {T : Set} → Vec T (n + m) → Vec T n
drop : (n : ℕ) → {m : ℕ} → {T : Set} → Vec T (n + m) → Vec T m



Equality Reasoning for Rewrite Rules - Split-Join (2)

● The split-join rule:

-- The proof of split-join rule
splitJoin : {m : ℕ} → {S T : Set} → (n : ℕ) → (f : S → T) → (xs : Vec S (m * n)) →

  (join  map (map f) split n {m}) xs ≡ map f xs
splitJoin {m} n f xs =
  begin
    join (map (map f) (split n {m} xs))
  ≡⟨ cong join (splitBeforeMapMapF n {m} f xs) ⟩
    join (split n {m} (map f xs))
  ≡⟨ simplification n {m} (map f xs) ⟩
    map f xs
  ∎



Equality Reasoning for Rewrite Rules - Split-Join (3)

● Lemmas:

splitBeforeMapMapF : (n : ℕ) → {m : ℕ} → {S T : Set} → 
 (f : S → T) → (xs : Vec S (m * n)) → 
 map (map f) (split n {m} xs) ≡ split n {m} (map f xs)

simplification : (n : ℕ) → {m : ℕ} → {T : Set} → (xs : Vec T (m * n)) → 
    (join ∘ split n {m}) xs ≡ xs



Proving join is Associative using Heterogeneous Equality (1) 

● We have a rule stating join is associative: 
● When we tried to define the equality relation using propositional equality as:

joinBeforeJoin : {n m o : ℕ} → {T : Set} → (xsss : Vec (Vec (Vec T o) m) n) →
  join (join xsss) ≡ join (map join xsss)

The compiler complains:
n != n * m of type ℕ
when checking that the inferred type of an application
Vec T (n * (m * o))
matches the expected type
Vec T (n * m * o)

● Vec T (n * (m * o)) and Vec T (n * m * o) are different types, even though the 
value of (n * (m * o)) equals to (n * m * o) since multiplication is associative.

● We need an equality relation for different types, i.e., heterogeneous equality.



Proving join is Associative using Heterogeneous Equality (2)

● join is associative:

-- The proof of join is associative
joinBeforeJoin : {n m o : ℕ} → {T : Set} → (xsss : Vec (Vec (Vec T o) m) n) →

  join (join xsss) ≅ join (map join xsss)
joinBeforeJoin [] = Heq.refl
joinBeforeJoin {suc n} {m} {o} {T} (xss :: xsss) =
  hbegin
    join (xss ++ join xsss)
  ≅⟨ join-++ xss (join xsss) ⟩
    join xss ++ join (join xsss)
  ≅⟨ hcong’ (Vec T) (*-assoc n m o) (λ y → join xss ++ y) (joinBeforeJoin xsss) ⟩
    join xss ++ join (map join xsss)
  h∎

● Where hcong’ is congruence in heterogeneous equality, join-++ is a lemma: 
join-++ : {n m o : ℕ} → {T : Set} → (xs1 : Vec (Vec T o) n) → 

(xs2 : Vec (Vec T o) m) → join (xs1 ++ xs2) ≅ join xs1 ++ join xs2



Equality Reasoning for Rewrite Rules - Tiling (1)

● A formal definition:
● Example: size = 3, step = 1, u = 5, v = 3

output array



Equality Reasoning for Rewrite Rules - Tiling (2)

● Issue: choices of u and v are not specified in paper, we only know: 

○

● Giving general restrictions to u and v: 

○

○

○ Using (suc sp) and (suc v) to ensure they are larger than zero 

● Let’s define the primitive slide first:



Equality Reasoning for Rewrite Rules - Tiling (3)

●

-- The definition of primitive slide
slide : {n : ℕ} → (sz : ℕ) → (sp : ℕ) → {T : Set} → Vec T (sz + n * (suc sp)) →

   Vec (Vec T sz) (suc n)
slide {zero} sz sp xs = [ xs ]
slide {suc n} sz sp xs =
  take sz {(suc n) * (suc sp)} xs ::
  slide {n} sz sp (drop (suc sp) xs)

ERROR:
sz != sp of type ℕ
when checking that the expression xs has type
Vec T (suc sp + (sz + n * suc sp))

xs has type  Vec T (suc sz + (sp + n * suc sp))
drop (suc sp) requires an argument with type Vec T (suc sp + (sz + n * suc sp)) 
Vec T (suc sz + (sp + n * suc sp)) and Vec T (suc sp + (sz + n * suc sp)) are 
not the same type, although we know the the sizes are equal and it’s just the xs under this 
context. 



Equality Reasoning for Rewrite Rules - Tiling (4)

●

-- The definition of primitive slide
slide : {n : ℕ} → (sz : ℕ) → (sp : ℕ) → {T : Set} → Vec T (sz + n * (suc sp)) →

   Vec (Vec T sz) (suc n)
slide {zero} sz sp xs = [ xs ]
slide {suc n} sz sp xs =
  take sz {(suc n) * (suc sp)} xs ::
  slide {n} sz sp (drop (suc sp) (cast (slide-lem n sz sp) xs))

● cast is used to cast the size of given array to satisfy pattern matching, defined as:
cast : {T : Set} → {m n : ℕ} → .(_ : m ≡ n) → Vec T m → Vec T n
cast {T} {zero} {zero} eq [] = []
cast {T} {suc m} {suc n} eq (x :: xs) = x :: cast {T} {m} {n} (cong pred eq) xs



Equality Reasoning for Rewrite Rules - Tiling (5)

● General ideas of developing proofs:
○ Changing the order of join in the expression
○ Proving the partitioning of slide

● Challenge: 
○ The pattern matching on array’s size introduces complexity into the proof.

● Proof on the next slides:
 



Equality Reasoning for Rewrite Rules - Tiling (6)
-- the proof of the tiling rule
tiling : {n m : ℕ} → {S T : Set} → (sz sp : N) → (f : Vec S sz → Vec T sz) → 

(xs : Vec S (sz + n * (suc sp) + m * suc (n + sp + n * sp))) →
join (map (λ (tile : Vec S (sz + n * (suc sp))) → 
map f (slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs)) ≡
map f (slide {n + m * (suc n)} sz sp (cast (lem1 n m sz sp) xs))

tiling {n} {m} {s} {t} sz sp f xs =
  begin
    join (map (λ (tile : Vec s (sz + n * (suc sp))) → map f (slide {n} sz sp tile))
    (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs))

  ≡⟨ cong join (map-λ {n} {m} sz sp f xs) ⟩ -- changing the order of the λ function
    join (map (map f) (map (slide {n} sz sp)
    (slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)))

  ≡⟨ mapMapFBeforeJoin f (map (slide {n} sz sp)
    (slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)) ⟩ -- changing the order of join
    map f (join (map (slide {n} sz sp) (slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)))
  ≡⟨ cong (map f) (slideJoin {n} {m} sz sp xs) ⟩ -- the partitioning of slide
    refl



Equality Reasoning for Rewrite Rules - Tiling (7)

● Lemmas:

-- changing the order of the λ function
map-λ : {n m : ℕ} → {S T : Set} → (sz : N) → (sp :ℕ) → (f : Vec S sz → Vec T sz) →
  (xs : Vec S (sz + n * (suc sp) + m * suc (n + sp + n * sp))) →
  map (λ (tile : Vec S (sz + n * (suc sp))) →
  map f (slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs) ≡
  map (map f) ((map (λ (tile : Vec S (sz + n * (suc sp))) →
  slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs))

 -- changing the order of join
mapMapFBeforeJoin: {S T : Set} → {m n : ℕ} →

(f : S → T) → (xs : Vec (Vec S n) m) →
join (map (map f) xs) ≡ map f (join xs) 



Equality Reasoning for Rewrite Rules - Tiling (8)
-- the partitioning of slide
slideJoin : {n m : ℕ} → {T : Set} → (sz : N) → (sp : N) →

(xs : Vec T (sz + n * (suc sp) + m * suc (n + sp + n * sp))) →
join (map (λ (tile : Vec T (sz + n * (suc sp))) →
slide {n} sz sp tile) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs)) ≡
slide {n + m * (suc n)} sz sp (cast (lem1 n m sz sp) xs)

-- base case
slideJoin {n} {zero} sz sp xs =
  begin
    slide sz sp xs ++ []
  ≡⟨ ++-[] (slide sz sp xs) ⟩
    slide sz sp xs
  ≡⟨ cong (slide sz sp) (lem2 {n} {sz} {sp} xs) ⟩
    refl



Equality Reasoning for Rewrite Rules - Tiling (9)
-- inductive case
slideJoin {n} {suc m} sz sp xs =
  begin
    slide {n} sz sp (take (sz + n * suc sp) xs) ++
    join (map (slide {n} sz sp) (slide {m} (sz + n * suc sp) (n + sp + n * sp)
    (drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs))))
  ≡⟨ cong (slide {n} sz sp (take (sz + n * suc sp) xs) ++_)
     (slideJoin {n} {m} sz sp (drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs))) ⟩
    slide {n} sz sp (take (sz + n * suc sp) xs) ++
    slide {n + m * suc n} sz sp (cast (lem1 n m sz sp)
    (drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs)))
  ≡⟨ lem4 {n} {m} sz sp xs ⟩
    refl



Equality Reasoning for Rewrite Rules - Tiling (10)

● Overcomplicated pattern matching in lem4 

postulate lem4 : {n m : ℕ} → {T : Set} → (sz sp : ℕ) →
(xs : Vec T (suc (sz + n * suc sp +
(n + sp + n * sp + m * suc (n + sp + n * sp))))) →
slide {n} sz sp (take (sz + n * suc sp)
{suc (n + sp + n * sp + m * suc (n + sp + n * sp))} xs) ++
slide {n + m * suc n} sz sp (cast (lem1 n m sz sp)
(drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs)))
≡
take sz {suc (sp + (n + (n + m * suc n)) * suc sp)}
(cast (lem1 n (suc m) sz sp) xs) ::
slide {n + (n + m * suc n)} sz sp
(drop (suc sp) {sz + (n + (n + m * suc n)) * suc sp}
(cast (slide-lem (n + (n + m * suc n)) sz sp )
(cast (lem1 n (suc m) sz sp) xs)))

It basically means: 



Equality Reasoning for Rewrite Rules - Tiling (11)

● We take sz = 3, suc sp = 1, u = 5 and suc v = 3 as an example:

● The RHS and LHS are obviously equal, however due to the overcomplicated 
pattern matching, we were not able to develop the proof.



Conclusion and Reflection

● Agda is helpful for formalising semantics and verifying rewrite rules
● The constraints on arrays’ sizes in rewrite rules are specified and well 

maintained
● Reasoning about the equality between arrays’ sizes can be complicated. We 

coped with this issue with some strategies:
○ Using cast to cast patterns at the constructor level
○ Using REWRITE to increase the flexibility of pattern matching
○ Using heterogeneous equality to reason about equality between two expression with different 

types

● However, sometimes the pattern matching is overcomplicated, causing some 
proofs not being able to be completed
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