
Proving the Correctness of Rewrite
Rules in Rise Rewrite-Based System

Xueying Qin

Motivation

● The rewrite system of RISE (the successor of LIFT) transforms programs
composed of high-level patterns into low-level code with equivalent
functionality using rewrite rules

● Ensuring the correctness of these rules is important to ensure a program’s
functionality is not altered after optimisation

● Therefore, we would like to develop mechanical proofs in Agda to show the
correctness of these rules

Background

● RISE
○ High-level programming language which provides high performance and code portability
○ Primitive patterns: map, reduce, split, join, etc.
○ Rewrite rules encode optimisation strategies

● Curry-Howard Correspondence
○ Propositions as types
○ Proofs as programs
○ Simplification of proofs as evaluation of programs

● Agda
○ A dependently-typed programming language
○ Used as a proof assistant in this project

RISE Example - Matrix Multiplication

● Matrix multiplication expresses in RISE

matrixMultiplication A B = map fun (aRow =>

 map fun (bCol =>

 reduce add 0 (map mul (zip aRow bCol))

) (transpose B)

) A

● Rewrite rules can be applied for optimisation
○ map f → join ∘ map (map f) ∘ split n

○ map (f ∘ g) → map f ∘ map g

○ reduce f id ∘ map g → reduce (λ a b. f a (g b)) id

○ …

Semantics of RISE in Agda

● data -- The set of data types
○ Set in Agda

● nat -- Natural numbers
○ ℕ in Agda

● array -- An indexed collection
○ Vec in Agda

● function
○ The function type in Agda, written as (x : A) → B or A → B

Semantics of RISE in Agda - Natural Numbers

● Natural numbers:

-- The definition of natural numbers in Agda
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ

-- The definition of natural number addition in Agda
+ : ℕ → ℕ → ℕ
zero + m = m
suc n + m = suc (n + m)

-- The definition of natural number multiplication in Agda
* : ℕ → ℕ → ℕ
zero * m = zero
suc n * m = m + n * m

Semantics of RISE in Agda - Indexed Collection

● An indexed collection:

-- Define an indexed collection
data Vec (A : Set) : ℕ → Set where
 [] : Vec A zero
 :: : {n : N} → A → Vec A n → Vec A (suc n)

-- The definition of vector concatenation
++ : {m n : ℕ} → Vec A m → Vec A n → Vec A (m + n)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Equality Reasoning for Rewrite Rules - Map-Fusion (1)

● A formal definition:
● We first need to define the primitive map:
●

-- The definition of primitive map
map : {n : ℕ} → {S T : Set} → (S → T) → Vec S n → Vec T n
map f [] = []
map f (x :: xs) = f x :: map f xs

Equality Reasoning for Rewrite Rules - Map-Fusion (2)

● The map-fusion rule:

fusion : {n : ℕ} → {S T R : Set} → (f : T → R) → (g : S → T) → (xs : Vec S n) →
 (map f ∘ map g) xs ≡ map (f ∘ g) xs

-- The proof of the map-fusion rule by induction
fusion f g [] = refl
fusion f g (x :: xs) = cong ((f ∘ g) x ::_) (fusion f ∘ g xs)

● refl is the reflexivity of equality
● Function cong is congruence, which is defined in Agda standard library as:

cong : {A B : Set} → ∀ (f : A → B) {x y} → x ≡ y → f x ≡ f y

Equality Reasoning for Rewrite Rules - Split-Join (1)
● A formal definition:
●

-- The definition of primitive split
split : (n : ℕ) → {m : ℕ} → {T : Set} → Vec T (m * n) → Vec (Vec T n) m
split n {zero} xs = []
split n {suc m} xs = take n {m * n} xs :: split n (drop n xs)

●
-- The definition of primitive join
join : {n m : ℕ} → {T : Set} → Vec (Vec T n) m → Vec T (m * n)
join [] = []
join (xs :: xs1) = xs ++ join xs1

● Where take and drop are:
take : (n : ℕ) → {m : ℕ} → {T : Set} → Vec T (n + m) → Vec T n
drop : (n : ℕ) → {m : ℕ} → {T : Set} → Vec T (n + m) → Vec T m

Equality Reasoning for Rewrite Rules - Split-Join (2)

● The split-join rule:

-- The proof of split-join rule
splitJoin : {m : ℕ} → {S T : Set} → (n : ℕ) → (f : S → T) → (xs : Vec S (m * n)) →

 (join map (map f) split n {m}) xs ≡ map f xs
splitJoin {m} n f xs =
 begin
 join (map (map f) (split n {m} xs))
 ≡⟨ cong join (splitBeforeMapMapF n {m} f xs) ⟩
 join (split n {m} (map f xs))
 ≡⟨ simplification n {m} (map f xs) ⟩
 map f xs
 ∎

Equality Reasoning for Rewrite Rules - Split-Join (3)

● Lemmas:

splitBeforeMapMapF : (n : ℕ) → {m : ℕ} → {S T : Set} →
 (f : S → T) → (xs : Vec S (m * n)) →
 map (map f) (split n {m} xs) ≡ split n {m} (map f xs)

simplification : (n : ℕ) → {m : ℕ} → {T : Set} → (xs : Vec T (m * n)) →
 (join ∘ split n {m}) xs ≡ xs

Proving join is Associative using Heterogeneous Equality (1)

● We have a rule stating join is associative:
● When we tried to define the equality relation using propositional equality as:

joinBeforeJoin : {n m o : ℕ} → {T : Set} → (xsss : Vec (Vec (Vec T o) m) n) →
 join (join xsss) ≡ join (map join xsss)

The compiler complains:
n != n * m of type ℕ
when checking that the inferred type of an application
Vec T (n * (m * o))
matches the expected type
Vec T (n * m * o)

● Vec T (n * (m * o)) and Vec T (n * m * o) are different types, even though the
value of (n * (m * o)) equals to (n * m * o) since multiplication is associative.

● We need an equality relation for different types, i.e., heterogeneous equality.

Proving join is Associative using Heterogeneous Equality (2)

● join is associative:

-- The proof of join is associative
joinBeforeJoin : {n m o : ℕ} → {T : Set} → (xsss : Vec (Vec (Vec T o) m) n) →

 join (join xsss) ≅ join (map join xsss)
joinBeforeJoin [] = Heq.refl
joinBeforeJoin {suc n} {m} {o} {T} (xss :: xsss) =
 hbegin
 join (xss ++ join xsss)
 ≅⟨ join-++ xss (join xsss) ⟩
 join xss ++ join (join xsss)
 ≅⟨ hcong’ (Vec T) (*-assoc n m o) (λ y → join xss ++ y) (joinBeforeJoin xsss) ⟩
 join xss ++ join (map join xsss)
 h∎

● Where hcong’ is congruence in heterogeneous equality, join-++ is a lemma:
join-++ : {n m o : ℕ} → {T : Set} → (xs1 : Vec (Vec T o) n) →

(xs2 : Vec (Vec T o) m) → join (xs1 ++ xs2) ≅ join xs1 ++ join xs2

Equality Reasoning for Rewrite Rules - Tiling (1)

● A formal definition:
● Example: size = 3, step = 1, u = 5, v = 3

output array

Equality Reasoning for Rewrite Rules - Tiling (2)

● Issue: choices of u and v are not specified in paper, we only know:

○

● Giving general restrictions to u and v:

○

○

○ Using (suc sp) and (suc v) to ensure they are larger than zero

● Let’s define the primitive slide first:

Equality Reasoning for Rewrite Rules - Tiling (3)

●

-- The definition of primitive slide
slide : {n : ℕ} → (sz : ℕ) → (sp : ℕ) → {T : Set} → Vec T (sz + n * (suc sp)) →

 Vec (Vec T sz) (suc n)
slide {zero} sz sp xs = [xs]
slide {suc n} sz sp xs =
 take sz {(suc n) * (suc sp)} xs ::
 slide {n} sz sp (drop (suc sp) xs)

ERROR:
sz != sp of type ℕ
when checking that the expression xs has type
Vec T (suc sp + (sz + n * suc sp))

xs has type Vec T (suc sz + (sp + n * suc sp))
drop (suc sp) requires an argument with type Vec T (suc sp + (sz + n * suc sp))
Vec T (suc sz + (sp + n * suc sp)) and Vec T (suc sp + (sz + n * suc sp)) are
not the same type, although we know the the sizes are equal and it’s just the xs under this
context.

Equality Reasoning for Rewrite Rules - Tiling (4)

●

-- The definition of primitive slide
slide : {n : ℕ} → (sz : ℕ) → (sp : ℕ) → {T : Set} → Vec T (sz + n * (suc sp)) →

 Vec (Vec T sz) (suc n)
slide {zero} sz sp xs = [xs]
slide {suc n} sz sp xs =
 take sz {(suc n) * (suc sp)} xs ::
 slide {n} sz sp (drop (suc sp) (cast (slide-lem n sz sp) xs))

● cast is used to cast the size of given array to satisfy pattern matching, defined as:
cast : {T : Set} → {m n : ℕ} → .(_ : m ≡ n) → Vec T m → Vec T n
cast {T} {zero} {zero} eq [] = []
cast {T} {suc m} {suc n} eq (x :: xs) = x :: cast {T} {m} {n} (cong pred eq) xs

Equality Reasoning for Rewrite Rules - Tiling (5)

● General ideas of developing proofs:
○ Changing the order of join in the expression
○ Proving the partitioning of slide

● Challenge:
○ The pattern matching on array’s size introduces complexity into the proof.

● Proof on the next slides:

Equality Reasoning for Rewrite Rules - Tiling (6)
-- the proof of the tiling rule
tiling : {n m : ℕ} → {S T : Set} → (sz sp : N) → (f : Vec S sz → Vec T sz) →

(xs : Vec S (sz + n * (suc sp) + m * suc (n + sp + n * sp))) →
join (map (λ (tile : Vec S (sz + n * (suc sp))) →
map f (slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs)) ≡
map f (slide {n + m * (suc n)} sz sp (cast (lem1 n m sz sp) xs))

tiling {n} {m} {s} {t} sz sp f xs =
 begin
 join (map (λ (tile : Vec s (sz + n * (suc sp))) → map f (slide {n} sz sp tile))
 (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs))

 ≡⟨ cong join (map-λ {n} {m} sz sp f xs) ⟩ -- changing the order of the λ function
 join (map (map f) (map (slide {n} sz sp)
 (slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)))

 ≡⟨ mapMapFBeforeJoin f (map (slide {n} sz sp)
 (slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)) ⟩ -- changing the order of join
 map f (join (map (slide {n} sz sp) (slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)))
 ≡⟨ cong (map f) (slideJoin {n} {m} sz sp xs) ⟩ -- the partitioning of slide
 refl

Equality Reasoning for Rewrite Rules - Tiling (7)

● Lemmas:

-- changing the order of the λ function
map-λ : {n m : ℕ} → {S T : Set} → (sz : N) → (sp :ℕ) → (f : Vec S sz → Vec T sz) →
 (xs : Vec S (sz + n * (suc sp) + m * suc (n + sp + n * sp))) →
 map (λ (tile : Vec S (sz + n * (suc sp))) →
 map f (slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs) ≡
 map (map f) ((map (λ (tile : Vec S (sz + n * (suc sp))) →
 slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs))

 -- changing the order of join
mapMapFBeforeJoin: {S T : Set} → {m n : ℕ} →

(f : S → T) → (xs : Vec (Vec S n) m) →
join (map (map f) xs) ≡ map f (join xs)

Equality Reasoning for Rewrite Rules - Tiling (8)
-- the partitioning of slide
slideJoin : {n m : ℕ} → {T : Set} → (sz : N) → (sp : N) →

(xs : Vec T (sz + n * (suc sp) + m * suc (n + sp + n * sp))) →
join (map (λ (tile : Vec T (sz + n * (suc sp))) →
slide {n} sz sp tile) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs)) ≡
slide {n + m * (suc n)} sz sp (cast (lem1 n m sz sp) xs)

-- base case
slideJoin {n} {zero} sz sp xs =
 begin
 slide sz sp xs ++ []
 ≡⟨ ++-[] (slide sz sp xs) ⟩
 slide sz sp xs
 ≡⟨ cong (slide sz sp) (lem2 {n} {sz} {sp} xs) ⟩
 refl

Equality Reasoning for Rewrite Rules - Tiling (9)
-- inductive case
slideJoin {n} {suc m} sz sp xs =
 begin
 slide {n} sz sp (take (sz + n * suc sp) xs) ++
 join (map (slide {n} sz sp) (slide {m} (sz + n * suc sp) (n + sp + n * sp)
 (drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs))))
 ≡⟨ cong (slide {n} sz sp (take (sz + n * suc sp) xs) ++_)
 (slideJoin {n} {m} sz sp (drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs))) ⟩
 slide {n} sz sp (take (sz + n * suc sp) xs) ++
 slide {n + m * suc n} sz sp (cast (lem1 n m sz sp)
 (drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs)))
 ≡⟨ lem4 {n} {m} sz sp xs ⟩
 refl

Equality Reasoning for Rewrite Rules - Tiling (10)

● Overcomplicated pattern matching in lem4

postulate lem4 : {n m : ℕ} → {T : Set} → (sz sp : ℕ) →
(xs : Vec T (suc (sz + n * suc sp +
(n + sp + n * sp + m * suc (n + sp + n * sp))))) →
slide {n} sz sp (take (sz + n * suc sp)
{suc (n + sp + n * sp + m * suc (n + sp + n * sp))} xs) ++
slide {n + m * suc n} sz sp (cast (lem1 n m sz sp)
(drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs)))
≡
take sz {suc (sp + (n + (n + m * suc n)) * suc sp)}
(cast (lem1 n (suc m) sz sp) xs) ::
slide {n + (n + m * suc n)} sz sp
(drop (suc sp) {sz + (n + (n + m * suc n)) * suc sp}
(cast (slide-lem (n + (n + m * suc n)) sz sp)
(cast (lem1 n (suc m) sz sp) xs)))

It basically means:

Equality Reasoning for Rewrite Rules - Tiling (11)

● We take sz = 3, suc sp = 1, u = 5 and suc v = 3 as an example:

● The RHS and LHS are obviously equal, however due to the overcomplicated
pattern matching, we were not able to develop the proof.

Conclusion and Reflection

● Agda is helpful for formalising semantics and verifying rewrite rules
● The constraints on arrays’ sizes in rewrite rules are specified and well

maintained
● Reasoning about the equality between arrays’ sizes can be complicated. We

coped with this issue with some strategies:
○ Using cast to cast patterns at the constructor level
○ Using REWRITE to increase the flexibility of pattern matching
○ Using heterogeneous equality to reason about equality between two expression with different

types

● However, sometimes the pattern matching is overcomplicated, causing some
proofs not being able to be completed

Reference
A. Abel. Irrelevance in type theory with a heterogeneous equality judgement. In International Conference on Foundations of Software Science and
Computational Structures, pages 57--71. Springer, 2011.
Agda Developer Team. Introduction to universes. URL https://agda.readthedocs.io/en/ latest/language/universe-levels.html. Accessed 2 Apr. 2020.
Agda Developer Team. The agda standard library, 2020. URL https://github.com/agda/ agda-stdlib. Accessed 2 Apr. 2020.
T. Altenkirch, C. McBride, and W. Swierstra. Observational equality, now! In Proceedings of the 2007 workshop on Programming languages meets
program verification, pages 57--68, 2007.
R. Atkey, M. Steuwer, S. Lindley, and C. Dubach. Strategy preserving compilation for parallel functional code. CoRR, abs/1710.08332, 2017.
J. Cockx, N. Tabareau, and T.Winterhalter. How to tame your rewrite rules. Types for Proofs and Programs, TYPES, 2019.
H. B. Curry. Functionality in combinatory logic. Proceedings of the National Academy of Sciences of the United States of America, 20(11):584, 1934.
B. Hagdorn, M. Steuwer, R. Fu, and J. Lenfer. ELEVATE, 2020. URL https://github.com/elevate-lang/elevate/tree/master/src/main/scala/elevate/rise
Accessed 2 Apr. 2020.
B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach. High performance stencil code generation with Lift. In Proceedings of the 2018
International Symposium on Code Generation and Optimization, pages 100--112, 2018.
W. A. Howard. The formulae-as-types notion of construction. To HB Curry: essays on combinatory logic, lambda calculus and formalism,
44:479--490, 1980.
M. Steuwer. Improving programmability and performance portability on many-core processors. PhD thesis, University of Münster, 2015.
M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating performance portable code using rewrite rules: from high-level functional expressions
to high-performance opencl code. ACM SIGPLAN Notices, 50(9):205--217, 2015.
N. Ulf, A. D. Nils, and A. Andreas. Agda. URL https://wiki.portal.chalmers.se/agda/ pmwiki.php. Accessed 2 Apr. 2020.
P.Wadler. Propositions as types. Communications of the ACM, 58(12):75--84, 2015.

https://agda.readthedocs.io/en/
https://github.com/agda/
https://github.com/elevate-lang/elevate/tree/master/src/main/scala/elevate/rise
https://wiki.portal.chalmers.se/agda/

Thank you!

xueying.qin@ed.ac.uk
Project repository: https://github.com/XYUnknown/individual-project

mailto:xueying.qin@ed.ac.uk
https://github.com/XYUnknown/individual-project

