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Introduction



Strategic Rewriting Languages

The core calculus of strategic rewriting languages like ELEVATE[1], Stratego[4] and
Strafunski[2] has a simple construct: atomic strategies and strategy combinators.

Atomic strategy
An atomic strategy is a rewrite rule:

addcom : a + b⇝ b + a
mapFusion : map f (map g xs) ⇝ map (f ◦ g) xs

Composed strategy
addcom ; addid addcom <+ multcom
repeat(mapFusion)

Strategy combinator
Strategy combinators compose
strategies together and controls the
application of atomic strategies:

s ; t Sequential composition, apply s then t

s <+ t Left choice, if fail to apply s then t

repeat(s) Keep applying s until inapplicable
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Importance of Strategic Rewriting Languages

• Strategic rewriting languages provide programmers with combinators and generic
traversals that allow them to: 1) control the application of rewrite rules; 2) reuse
rewrite rules

• Many application areas: for writing program optimisation (ELEVATE), writing
interpreter/compiler for DSLs (Spoofax/Stratego) etc.
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Importance of A Formal Understanding of Strategic Rewriting Languages

Strategies can go wrong
• Result in error - an atomic strategy is not defined for certain expressions

or strategies are not well composed

• Do not terminate - for example : repeat(SKIP)

• Do not rewrite an expression into desired form

Therefore, we would like a formal understanding of these strategies and a framework
that allows us to formally reason about these strategies.
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Contributions

• We design, formalise and mechanise using Isabelle denotational semantics
of a strategic rewriting language, we prove computational soundness and
adequacy between the denotational semantics and an existing big-step
operational semantics.

• We design, formalise and mechanise using Isabelle the weakest
precondition calculus for the strategic rewriting language. We prove its
soundness w.r.t. the denotational semantics.

• We demonstrate how to use the weakest precondition calculus to prove
properties of stratetigic rewriting.
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Semantics of Our Strategic
Rewriting Language



System S - Syntax (0)

System S
System S [5] is the core calculus of the strategic rewriting languages we study
that contains atomic strategies (rewrite rules) and strategy combinators which
compose strategies and perform expression traversals.

Expression
The expressions being rewritten by strategies are in the form of:

Expressions(E) e := Id | Fun e e | App e e
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System S - Syntax (1)

Strategy
Strategy (S) s := SKIP (Always success) | ABORT (Always fail)

| atomic (Atomic strategy)

| X (Variable)

| s1 ; s2 (Sequential composition)

| s1 <+ s2 (Left choice)

| s1 <+> t2 (Nondeterministic choice)

| one(s) (Apply s to one child)

| some(s) (Apply s to as many children as possible)

| all(s) (Apply s to all children)

| 𝜇X .s (Fixed point operator)
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Denotational Semantics - Domain (0)

We define a denotational semantics. Since our strategies include a fixed point operator,
we need to ensure the denotational semantics of strategies is monotone. To do so, we
provide a Plotkin powerdomain with Egli-Milner ordering where divergence (div) is the
bottom element, and point-wise lift it to the domain (which is a CPO) for defining our
denotational semantics.
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Denotational Semantics - Domain (1)

The Plotkin powerdomain
𝔇p = P¬∅ (E ∪ {err} ∪ {div})

Egli-Milner ordering
a ⪯ b ⇐⇒ (∀x ∈ a. ∃y ∈ b. x ⪯ y) ∧ (∀y ∈ b. ∃x ∈ a. x ⪯ y)

The domain
𝔇 = E→ 𝔇p
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Denotational Semantics by Examples - Skip, Abort and Atomic

Basics
Variable(V) X Y Z ... ⟦S ⟧ : ΓS → 𝔇

Semantic Environment(ΓS) 𝜉 : V→ 𝔇

𝜉 := ⊥ | 𝜉 [X ↦→ d]

Example
addcom : a + b⇝ b + a 1 + 3

addcom 3 + 1 1 + 3 SKIP 1 + 3 1 + 3 ABORT err

Semantics
⟦atomic⟧𝜉 = 𝜆e.{atomic(e) | atomic(e) def} ∪ {err | atomic(e) undef}
⟦SKIP⟧𝜉 = 𝜆e.{e}
⟦ABORT⟧𝜉 = 𝜆e.{err}
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Denotational Semantics by Examples - Sequential Composition

Example
addid : 0 + a⇝ a addcom : a + b⇝ b + a

3 + 0
addcom ; addid 3

Semantics
( ;s ) : 𝔇 → 𝔇 → 𝔇

(s ;s t) (e) =
⋃

{t(x) | x ∈ s(e) ∩ E} ∪ {x | x ∈ s(e) ∩ {div, err}}

⟦s ; t⟧𝜉 = ⟦s⟧𝜉 ;s ⟦t⟧𝜉
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Denotational Semantics by Examples - Left Choice

Example
addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a

3 + 6
addcom<+multcom 6 + 3 3 ∗ 6

addcom<+multcom 6 ∗ 3

Example - Try
try(s) = s <+ SKIP 3 + 6

try (multcom )
3 + 6

Semantics
(<+s) : 𝔇 → 𝔇 → 𝔇

(s <+s t) (e) = (s(e) \ {err}) ∪ {y | y ∈ t(e) ∧ err ∈ s(e)}
⟦s <+ t⟧𝜉 = ⟦s⟧𝜉 <+s ⟦t⟧𝜉
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Denotational Semantics by Examples - Nondeterministic Choice

Example
addid : 0 + a⇝ a addcom : a + b⇝ b + a

0 + 3
addid<+>addcom 3 0 + 3

addid<+>addcom 3 + 0

Semantics
(<+>s) : 𝔇 → 𝔇 → 𝔇

(s <+>s t) (e) = {x | x ∈ s(e) ∩ E} ∪ {div | div ∈ s(e)}
∪ {y | y ∈ t(e) ∩ E} ∪ {div | div ∈ t(e)}
∪ {err | err ∈ s(e) ∩ t(e)}

⟦s <+> t⟧𝜉 = ⟦s⟧𝜉 <+>s ⟦t⟧𝜉
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Denotational Semantics by Examples - One (0)

Example
addcom : a + b⇝ b + a

+
+

96

+
31

one(addcom )
+

+
96

+
13

+
+

96

+
31

one(addcom )
+

+
69

+
31
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Denotational Semantics by Examples - One (1)

Example
addcom : a + b⇝ b + a

+

+

96

+

31

one(addcom )

+

+

96

+

13

+

+

96

+

31

one(addcom )

+

+

69

+

31

Semantics
(ones) : 𝔇 → 𝔇

ones (s) (e) = {
n

e2x
| e =

n

e2e1
∧ x ∈ s(e1) ∩ E}

∪ {
n

xe1
| e =

n

e2e1
∧ x ∈ s(e2) ∩ E}

∪ {div | e =
n

e2e1
∧ div ∈ s(e1) ∪ s(e2)}

∪ {err | e = Id ∨ (e =
n

e2e1
∧ err ∈ s(e1) ∩ s(e2))}

⟦one(s)⟧𝜉 = ones (⟦s⟧𝜉)
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Denotational Semantics by Examples - Fixed Point Operator(0)

Example - Repeat
repeat(s) = 𝜇X .try(s ; X ) addid : 0 + a⇝ a

+
+

+
30

0

0 repeat (addid )
3
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Denotational Semantics by Examples - Fixed Point Operator(1)

Example - Top down
topDown(s) = 𝜇X .s <+ one(X ) addid : 0 + a⇝ a

+
+

+
30

0

0 topDown(addid )
+

+
30

0

+
+

+
30

0

1 topDown(addid )
+
+

30

1
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Denotational Semantics by Examples - Fixed Point Operator(2)

Semantics
⟦X⟧𝜉 = 𝜉X

⟦𝜇X .s⟧𝜉 = 𝜇X.⟦s⟧(𝜉 [X ↦→ X])
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Correspondence to Existing Big-Step Operational Semantics(0)

Big-Step operational semantics
The existing big-step operational semantics does not model divergence. In
general, it takes the form of:

e
s−→ e′

where e′ can be either an expression or an error.
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Correspondence to Existing Big-Step Operational Semantics(1)

Closed strategy
fv (s♣) = ∅

Computational soundness
e

s♣−→ e′

e′ ∈ ⟦s♣⟧𝜉e

Computational adequacy
e′ ∈ ⟦s♣⟧𝜉e ∧ e′ ≠ div

e
s♣−→ e′

Equivalence?
We believe if we add divergence to the big-step operational semantics, we would
be able to conclude that these two semantics are equivalent.
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Location Based Weakest
Precondition Calculus



Strategies Can Go Wrong

Error
addid : 0 + a⇝ a addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a

6 + 3
addid err

+
36

one(addcom ) err

0 + 3
addcom ;multcom err 0 + 3

addid<+addcom ; addcom err

Divergence
e

repeat (SKIP)
div 6 + 3

repeat (addcom )
div

Undesired result
We want 3 + 0 0 + 3

addid<+addcom 3
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Introduction of Weakest Precondition Calculus

Weakest precondition
Given a program S and a postcondition Q, a weakest precondition is a predicate
Pw such that for any precondition P:

{P}S{Q} ⇔ (P ⇒ Pw)
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Location Based Weakest Precondition Calculus for System S

The challenge in design
We have strategies that can traverse the syntax tree and control at what
location in the syntax tree to apply a strategy — we need a notion of “location”
in our formulas.

Our solution
We introduce the location as a path in the syntax tree into our formulas.
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Location Based Weakest Precondition Calculus for System S - Basics (0)

Tag and environment
Tag(T) t := · | ↑

Logic Environment(ΓL) 𝜁 : (V × T) → (L→ P(E) → P(E))
𝜁 := ⊥ | 𝜁 [(X , t) ↦→ f ]

Position
Position i := 𝓁 | 𝓇

Location
Location(L) l := 𝜖 | l ⊲ i | i ⊳ l

Location in a Tree
+ (𝜖 )

3 (𝜖 ⊲ 𝓇)1 (𝜖 ⊲ 𝓁)
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Location Based Weakest Precondition Calculus for System S - Basics (1)

Helper partial functions
update : L→ E→ P¬∅ (E ∪ {err} ∪ {div}) → P¬∅ (E ∪ {err} ∪ {div})
update(𝜖 , e, xs) = xs

update(𝓁 ⊳ l,
n

e2e1
, xs) = {

n

e2x
| x ∈ update(l, e1, xs) ∩ E} ∪ (xs ∩ {err, div})

update(𝓇 ⊳ l,
n

e2e1
, xs) = {

n

xe1
| x ∈ update(l, e2, xs) ∩ E} ∪ (xs ∩ {err, div})

lookup : L→ E→ E
lookup(𝜖 , e) = e

lookup(𝓁 ⊳ l,
n

e2e1
) = lookup(l, e1)

lookup(𝓇 ⊳ l,
n

e2e1
) = lookup(l, e2)

Shoggoth: A Formalised Logic for Strategic Rewriting 28



Weakest Precondition for Total Correctness

Definition
wps@l𝜁 (P) = Q (wps : L→ ΓL → P(E) → P(E))

If for a set of expressions described by the postcondition P, a non-empty set of
expressions described by the precondition Q can be found,

then each expression in the precondition set will be successfully transformed into an
expression in the postcondition set, by applying strategy s at location l in the logic
environment 𝜁 .
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Weakest May Error Precondition

Definition
wp↑s@l𝜁 (P) = Q (wp↑s : L→ ΓL → P(E) → P(E))

If for a set of expressions described by the postcondition P, a non-empty set of
expressions described by the precondition Q can be found,

then each expression in the precondition set will be successfully transformed into an
expression in the postcondition set or result in error, by applying strategy s at location
l in the logic environment 𝜁 .
It is used for defining the weakest precondition for total correctness.
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Definition of Unsuccessful Execution

A strategy cannot execute successfully
wps@l𝜁 (U) = ∅

⇒
The strategy s cannot execute successfully on any input expression.

wps@l𝜁 (P) = ∅
⇒

The strategy s cannot transform the any input expression into an output expression in P.

Invalid input expression
e ⇒ wps@l𝜁 (U) ≠ ∅ ∧ e ∉ wps@l𝜁 (U)

⇒
The strategy s cannot execute successfully on the input expression e.

e ⇒ wps@l𝜁 (P) ≠ ∅ ∧ e ∉ wps@l𝜁 (P)
⇒

The strategy s cannot transform the input expression e into an output expression in P.
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A Strategy Is Not Well-Composed

Example
addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ aaddcom ; multcom (Bad?)

Wp for atomic strategy
wpatomic@l𝜁 (P) = {e | update(l, e, ⟦atomic⟧⊥(lookup(l, e))) ⊆ P}

wp↑atomic@l𝜁 (P) = {e | update(l, e, ⟦atomic⟧⊥(lookup(l, e))) ⊆ P ∪ {err}}

Wp for addcom and multcom
wpaddcom@𝜖 𝜁 (U) = {e | e = App (+) m n} wpmultcom@𝜖 𝜁 (U) = {e | e = App (∗) m n}

Wp of sequential composition
wps ; t@l𝜁 (P) = wps@l𝜁 (wpt@l𝜁 (P)) wp↑s ; t@l𝜁 (P) = wp

↑
s@l𝜁 (wp

↑
t@l𝜁 (P))

Checking invalid composition
wpaddcom ;multcom@𝜖 𝜁 (U) = ∅ (Bad!)
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A Strategy Is Not Well-Composed for Desired Output

Example
multzero : 0 ∗ a⇝ 0 multcom : a ∗ b⇝ b ∗ a

e
multcom<+>multzero ;multcom {e | e = App (∗) 0 m} (Bad?)

Wp of non-deterministic choice
wps<+>t@l𝜁 (P) = (wp↑t@l𝜁 (P) ∩ wps@l𝜁 (P)) ∪ (wp↑s@l𝜁 (P) ∩ wpt@l𝜁 (P))

wp↑s<+>t@l𝜁 (P) = wp
↑
s@l𝜁 (P) ∩ wp

↑
t@l𝜁 (P)

Checking invalid composition for P
wpmultcom<+>multzero ;multcom@𝜖 𝜁 ({e | e = App (∗) 0 m}) = ∅ (Bad!)
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Invalid Input

Example
addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a

3 ∗ 6
multcom<+addcom ;multcom 3 ∗ 6 3 + 6

multcom<+addcom ;multcom err

Wp of left choice
wps<+t@l𝜁 (P) = wps@l𝜁 (P) ∪ (wp↑s@l𝜁 (P) ∩ wpt@l𝜁 (P))

wp↑s<+t@l𝜁 (P) = wps@l𝜁 (P) ∪ (wp↑s@l𝜁 (P) ∩ wp
↑
t@l𝜁 (P))

Checking Invalid Input
wpmultcom<+addcom ;multcom@𝜖 𝜁 (U) = {e | e = App (∗) a b}
3 ∗ 6 ∈ {e | e = App (∗) a b} (Good!)

3 + 6 ∉ {e | e = App (∗) a b} (Bad!)
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Invalid Input for A Desired Output

Example
multzero : 0 ∗ a⇝ 0 multcom : a ∗ b⇝ b ∗ a

3 ∗ 4
multcom<+multzero ;multcom

? {e | e = App (∗) 0 m}

Checking invalid input for P
wpmultcom<+multzero ;multcom@𝜖 𝜁 ({e | e = App (∗) 0 m}) = {e | e = App (∗) 0 m}
3 ∗ 4 ∉ {e | e = App (∗) 0 m} (Bad!)
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Detect Divergence (0)

The given strategy will diverge, i.e., will not lead to any successful execution.

Example
repeat(SKIP) Bad?

Wp of fixed point operator
wp𝜇X .s@l𝜁 (P) = [LFP𝒳 : Δ] (l) (P) wp↑

𝜇X .s@l𝜁 (P) = [LFP𝒴 : Δ] (l) (P)

Where:

Δ =

{
𝒳(l) (P) = wps@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P)
𝒴(l) (P) = wp↑s@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P)

wpX@l𝜁 (P) = 𝜁 (X , ·) (l) (P) (where 𝜁 (X , ·) def.)

wp↑X@l𝜁 (P) = 𝜁 (X ,↑)(l) (P) (where 𝜁 (X ,↑) def.)
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Detect Divergence (1)

Example
repeat(SKIP) Bad?

Wp for repeat
wp𝜇X .try(s ; X )@l𝜁 (P) = wp↑𝜇X .try(s ; X )@l𝜁 (P) = [LFP𝒳 : Δ] (l) (P)

Where:

Δ = 𝒳(l) (P) = wps@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→ 𝒳] (𝒳(l) (P))
∪ (wp↑s@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→ 𝒳] (𝒳(l) (P)) ∩ P)

Checking divergence
wprepeat(SKIP)@𝜖 𝜁 (U) = ∅ Bad!
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Detect Divergence - Demonic Non-determinism

We take divergence seriously — a strategy which can either diverge or successfully
execute leads to diverge.

Example
SKIP <+> repeat(SKIP) Bad?

Checking divergence
wpSKIP<+>repeat(SKIP)@𝜖 𝜁 (U) = ∅ Bad!
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Reasoning About Traversals - One (0)

Example

addcom : a + b⇝ b + a
+

36

one(addcom ) err

+
+

96

+
31

one(addcom )
+

+
96

+
13

Wp of one
wpone(s)@l𝜁 (P) = (wp↑s@l⊲𝓁𝜁 (P) ∩ wps@l⊲𝓇𝜁 (P)) ∪ (wp↑s@l⊲𝓇𝜁 (P) ∩ wps@l⊲𝓁𝜁 (P))

wp↑one(s)@l𝜁 (P) = {e | lookup(l, e) = Id} ∪ (wp↑s@l⊲0𝜁 (P) ∩ wp
↑
s@l⊲1𝜁 (P))
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Reasoning About Traversals - One (1)

Checking invalid input

wpone(addcom )@𝜖 𝜁 ({e | e = App (∗) 0 m}) = {e | e =
x

er+
nm

} ∪ {e | e =
x

+
nm

el }

+
36

∉ {e | e =
x

er+
nm

} ∪ {e | e =
x

+
nm

el } Bad!

+
+

96

+
31

∈ {e | e =
x

er+
nm

} ∪ {e | e =
x

+
nm

el } Good!
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Reasoning About Traversals - Top Down (0)

Example
∗

∗

∗

96

3

1 topDown(addcom )
err

∗

∗

+

96

3

1 topDown(addcom )

∗

∗

+

69

3

1

Wp of top down
wp𝜇X .s<+one(X )@l𝜁 (P) = [LFP𝒳 : Δ] (l) (P) wp↑

𝜇X .s<+one(X )@l𝜁 (P) = [LFP𝒴 : Δ] (l) (P)

Where:

Δ =


𝒳(l) (P) = wps@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P) ∪ (wp↑s@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P)

∩ ((𝒴(l ⊲ 𝓁) (P) ∩𝒳(l ⊲ 𝓇) (P)) ∪ (𝒴(l ⊲ 𝓇) (P) ∩𝒳(l ⊲ 𝓁) (P))))
𝒴(l) (P) = wps@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P) ∪ (wp↑s@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P)

∩ (𝒴(l ⊲ 𝓁) (P) ∩𝒴(l ⊲ 𝓇) (P)))
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Reasoning About Traversals - Top Down (1)

Checking invalid input
wptopDown(addcom@𝜖 𝜁 (U) = {e | ∃l. lookup l e =

+
nm
}

∗
∗
+

96

3

1
∈ {e | ∃l. lookup l e =

+
nm
} Good!

∗
∗

∗
96

3

1
∉ {e | ∃l. lookup l e =

+
nm
} Bad!

Shoggoth: A Formalised Logic for Strategic Rewriting 42



Our Weakest Precondition is Sound w.r.t. the Denotational Semantics

Soundness Theorems

∀X l P. 𝜁 (X , ·) (l) (P) = {e | update(l, e, (𝜉 (X ) (lookup(l, e)))) ⊆ P}
∧𝜁 (X ,↑)(l) (P) = {e | update(l, e, (𝜉 (X ) (lookup(l, e)))) ⊆ P ∪ {err}}

wps@l𝜁 (P) = {e | update(l, e, ⟦s⟧𝜉 (lookup(l, e))) ⊆ P}

(Weakest Precondition for Total Correctness)

∀X l P. 𝜁 (X , ·) (l) (P) = {e | update(l, e, (𝜉 (X ) (lookup(l, e)))) ⊆ P}
∧𝜁 (X ,↑)(l) (P) = {e | update(l, e, (𝜉 (X ) (lookup(l, e)))) ⊆ P ∪ {err}}

wp↑s@l𝜁 (P) = {e | update(l, e, ⟦s⟧𝜉 (lookup(l, e))) ⊆ P ∪ {err}}

(Weakest May Error Precondition)
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Conclusion and Furure Work



Conclusion
• We present the formalised denotational semantics of System S and

demonstrate the correspondence (potentially equivalence) between the
denotational semantics and big-step operational semantics.

• We present the formalised weakest precondition calculus for System S and
demostrated the usage of the weakest precondition calculus for reasoning
about the execution of strategies.

Future Work
• Rewriting expressions represented in other forms such as graphs?

• Using weakest precondition calculus for automatic reasoning about the
execution of strategies?
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We were on the track ahead as the nightmare plastic column of foetid black iridescence oozed tightly onward through its fifteen-foot sinus;
gathering unholy speed and driving before it a spiral, re-thickening cloud of the pallid abyss-vapour. It was a terrible, indescribable thing
vaster than any subway train—a shapeless congeries of protoplasmic bubbles, faintly self-luminous, and with myriads of temporary eyes
forming and unforming as pustules of greenish light all over the tunnel-filling front that bore down upon us, crushing the frantic penguins
and slithering over the glistening floor that it and its kind had swept so evilly free of all litter. Still came that eldritch, mocking cry —
“Tekeli-li! Tekeli-li!” And at last we remembered that the daemoniac shoggoths — given life, thought, and plastic organ patterns solely by
the Old Ones, and having no language save that which the dot-groups expressed — had likewise no voice save the imitated accents of their
bygone masters. —H. P. Lovecraft ”From the Mountains of Madness”[3]

Thank you

Xueying Qin [xueying.qin@ed.ac.uk]
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