
Shoggoth:
A Formalised Logic

for Strategic Rewriting
Xueying Qin1

Rob van Glabbeek1, Peter Höfner2, Liam O’Connor1, Michel Steuwer1

1 The University of Edinburgh 2 Australian National University

July 17, 2023

Table of Contents

0. Introduction

1. Semantics of Our Strategic Rewriting Language

2. Location Based Weakest Precondition Calculus

3. Conclusion and Future Work

Shoggoth: A Formalised Logic for Strategic Rewriting 1

Introduction

Strategic Rewriting Languages

The core calculus of strategic rewriting languages like ELEVATE[1], Stratego[4] and
Strafunski[2] has a simple construct: atomic strategies and strategy combinators.

Atomic strategy
An atomic strategy is a rewrite rule:

addcom : a + b⇝ b + a
mapFusion : map f (map g xs) ⇝ map (f ◦ g) xs

Composed strategy
addcom ; addid addcom <+ multcom
repeat(mapFusion)

Strategy combinator
Strategy combinators compose
strategies together and controls the
application of atomic strategies:

s ; t Sequential composition, apply s then t

s <+ t Left choice, if fail to apply s then t

repeat(s) Keep applying s until inapplicable

Shoggoth: A Formalised Logic for Strategic Rewriting 3

Importance of Strategic Rewriting Languages

• Strategic rewriting languages provide programmers with combinators and generic
traversals that allow them to: 1) control the application of rewrite rules; 2) reuse
rewrite rules

• Many application areas: for writing program optimisation (ELEVATE), writing
interpreter/compiler for DSLs (Spoofax/Stratego) etc.

Shoggoth: A Formalised Logic for Strategic Rewriting 4

Importance of A Formal Understanding of Strategic Rewriting Languages

Strategies can go wrong
• Result in error - an atomic strategy is not defined for certain expressions

or strategies are not well composed

• Do not terminate - for example : repeat(SKIP)

• Do not rewrite an expression into desired form

Therefore, we would like a formal understanding of these strategies and a framework
that allows us to formally reason about these strategies.

Shoggoth: A Formalised Logic for Strategic Rewriting 5

Contributions

• We design, formalise and mechanise using Isabelle denotational semantics
of a strategic rewriting language, we prove computational soundness and
adequacy between the denotational semantics and an existing big-step
operational semantics.

• We design, formalise and mechanise using Isabelle the weakest
precondition calculus for the strategic rewriting language. We prove its
soundness w.r.t. the denotational semantics.

• We demonstrate how to use the weakest precondition calculus to prove
properties of stratetigic rewriting.

Shoggoth: A Formalised Logic for Strategic Rewriting 6

Semantics of Our Strategic
Rewriting Language

System S - Syntax (0)

System S
System S [5] is the core calculus of the strategic rewriting languages we study
that contains atomic strategies (rewrite rules) and strategy combinators which
compose strategies and perform expression traversals.

Expression
The expressions being rewritten by strategies are in the form of:

Expressions(E) e := Id | Fun e e | App e e

Shoggoth: A Formalised Logic for Strategic Rewriting 8

System S - Syntax (1)

Strategy
Strategy (S) s := SKIP (Always success) | ABORT (Always fail)

| atomic (Atomic strategy)

| X (Variable)

| s1 ; s2 (Sequential composition)

| s1 <+ s2 (Left choice)

| s1 <+> t2 (Nondeterministic choice)

| one(s) (Apply s to one child)

| some(s) (Apply s to as many children as possible)

| all(s) (Apply s to all children)

| 𝜇X .s (Fixed point operator)

Shoggoth: A Formalised Logic for Strategic Rewriting 9

Denotational Semantics - Domain (0)

We define a denotational semantics. Since our strategies include a fixed point operator,
we need to ensure the denotational semantics of strategies is monotone. To do so, we
provide a Plotkin powerdomain with Egli-Milner ordering where divergence (div) is the
bottom element, and point-wise lift it to the domain (which is a CPO) for defining our
denotational semantics.

Shoggoth: A Formalised Logic for Strategic Rewriting 10

Denotational Semantics - Domain (1)

The Plotkin powerdomain
𝔇p = P¬∅ (E ∪ {err} ∪ {div})

Egli-Milner ordering
a ⪯ b ⇐⇒ (∀x ∈ a. ∃y ∈ b. x ⪯ y) ∧ (∀y ∈ b. ∃x ∈ a. x ⪯ y)

The domain
𝔇 = E→ 𝔇p

Shoggoth: A Formalised Logic for Strategic Rewriting 11

Denotational Semantics by Examples - Skip, Abort and Atomic

Basics
Variable(V) X Y Z ... ⟦S ⟧ : ΓS → 𝔇

Semantic Environment(ΓS) 𝜉 : V→ 𝔇

𝜉 := ⊥ | 𝜉 [X ↦→ d]

Example
addcom : a + b⇝ b + a 1 + 3

addcom 3 + 1 1 + 3 SKIP 1 + 3 1 + 3 ABORT err

Semantics
⟦atomic⟧𝜉 = 𝜆e.{atomic(e) | atomic(e) def} ∪ {err | atomic(e) undef}
⟦SKIP⟧𝜉 = 𝜆e.{e}
⟦ABORT⟧𝜉 = 𝜆e.{err}

Shoggoth: A Formalised Logic for Strategic Rewriting 12

Denotational Semantics by Examples - Sequential Composition

Example
addid : 0 + a⇝ a addcom : a + b⇝ b + a

3 + 0
addcom ; addid 3

Semantics
(;s) : 𝔇 → 𝔇 → 𝔇

(s ;s t) (e) =
⋃

{t(x) | x ∈ s(e) ∩ E} ∪ {x | x ∈ s(e) ∩ {div, err}}

⟦s ; t⟧𝜉 = ⟦s⟧𝜉 ;s ⟦t⟧𝜉

Shoggoth: A Formalised Logic for Strategic Rewriting 13

Denotational Semantics by Examples - Left Choice

Example
addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a

3 + 6
addcom<+multcom 6 + 3 3 ∗ 6

addcom<+multcom 6 ∗ 3

Example - Try
try(s) = s <+ SKIP 3 + 6

try (multcom)
3 + 6

Semantics
(<+s) : 𝔇 → 𝔇 → 𝔇

(s <+s t) (e) = (s(e) \ {err}) ∪ {y | y ∈ t(e) ∧ err ∈ s(e)}
⟦s <+ t⟧𝜉 = ⟦s⟧𝜉 <+s ⟦t⟧𝜉

Shoggoth: A Formalised Logic for Strategic Rewriting 14

Denotational Semantics by Examples - Nondeterministic Choice

Example
addid : 0 + a⇝ a addcom : a + b⇝ b + a

0 + 3
addid<+>addcom 3 0 + 3

addid<+>addcom 3 + 0

Semantics
(<+>s) : 𝔇 → 𝔇 → 𝔇

(s <+>s t) (e) = {x | x ∈ s(e) ∩ E} ∪ {div | div ∈ s(e)}
∪ {y | y ∈ t(e) ∩ E} ∪ {div | div ∈ t(e)}
∪ {err | err ∈ s(e) ∩ t(e)}

⟦s <+> t⟧𝜉 = ⟦s⟧𝜉 <+>s ⟦t⟧𝜉

Shoggoth: A Formalised Logic for Strategic Rewriting 15

Denotational Semantics by Examples - One (0)

Example
addcom : a + b⇝ b + a

+
+

96

+
31

one(addcom)
+

+
96

+
13

+
+

96

+
31

one(addcom)
+

+
69

+
31

Shoggoth: A Formalised Logic for Strategic Rewriting 16

Denotational Semantics by Examples - One (1)

Example
addcom : a + b⇝ b + a

+

+

96

+

31

one(addcom)

+

+

96

+

13

+

+

96

+

31

one(addcom)

+

+

69

+

31

Semantics
(ones) : 𝔇 → 𝔇

ones (s) (e) = {
n

e2x
| e =

n

e2e1
∧ x ∈ s(e1) ∩ E}

∪ {
n

xe1
| e =

n

e2e1
∧ x ∈ s(e2) ∩ E}

∪ {div | e =
n

e2e1
∧ div ∈ s(e1) ∪ s(e2)}

∪ {err | e = Id ∨ (e =
n

e2e1
∧ err ∈ s(e1) ∩ s(e2))}

⟦one(s)⟧𝜉 = ones (⟦s⟧𝜉)

Shoggoth: A Formalised Logic for Strategic Rewriting 17

Denotational Semantics by Examples - Fixed Point Operator(0)

Example - Repeat
repeat(s) = 𝜇X .try(s ; X) addid : 0 + a⇝ a

+
+

+
30

0

0 repeat (addid)
3

Shoggoth: A Formalised Logic for Strategic Rewriting 18

Denotational Semantics by Examples - Fixed Point Operator(1)

Example - Top down
topDown(s) = 𝜇X .s <+ one(X) addid : 0 + a⇝ a

+
+

+
30

0

0 topDown(addid)
+

+
30

0

+
+

+
30

0

1 topDown(addid)
+
+

30

1

Shoggoth: A Formalised Logic for Strategic Rewriting 19

Denotational Semantics by Examples - Fixed Point Operator(2)

Semantics
⟦X⟧𝜉 = 𝜉X

⟦𝜇X .s⟧𝜉 = 𝜇X.⟦s⟧(𝜉 [X ↦→ X])

Shoggoth: A Formalised Logic for Strategic Rewriting 20

Correspondence to Existing Big-Step Operational Semantics(0)

Big-Step operational semantics
The existing big-step operational semantics does not model divergence. In
general, it takes the form of:

e
s−→ e′

where e′ can be either an expression or an error.

Shoggoth: A Formalised Logic for Strategic Rewriting 21

Correspondence to Existing Big-Step Operational Semantics(1)

Closed strategy
fv (s♣) = ∅

Computational soundness
e

s♣−→ e′

e′ ∈ ⟦s♣⟧𝜉e

Computational adequacy
e′ ∈ ⟦s♣⟧𝜉e ∧ e′ ≠ div

e
s♣−→ e′

Equivalence?
We believe if we add divergence to the big-step operational semantics, we would
be able to conclude that these two semantics are equivalent.

Shoggoth: A Formalised Logic for Strategic Rewriting 22

Location Based Weakest
Precondition Calculus

Strategies Can Go Wrong

Error
addid : 0 + a⇝ a addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a

6 + 3
addid err

+
36

one(addcom) err

0 + 3
addcom ;multcom err 0 + 3

addid<+addcom ; addcom err

Divergence
e

repeat (SKIP)
div 6 + 3

repeat (addcom)
div

Undesired result
We want 3 + 0 0 + 3

addid<+addcom 3

Shoggoth: A Formalised Logic for Strategic Rewriting 24

Introduction of Weakest Precondition Calculus

Weakest precondition
Given a program S and a postcondition Q, a weakest precondition is a predicate
Pw such that for any precondition P:

{P}S{Q} ⇔ (P ⇒ Pw)

Shoggoth: A Formalised Logic for Strategic Rewriting 25

Location Based Weakest Precondition Calculus for System S

The challenge in design
We have strategies that can traverse the syntax tree and control at what
location in the syntax tree to apply a strategy — we need a notion of “location”
in our formulas.

Our solution
We introduce the location as a path in the syntax tree into our formulas.

Shoggoth: A Formalised Logic for Strategic Rewriting 26

Location Based Weakest Precondition Calculus for System S - Basics (0)

Tag and environment
Tag(T) t := · | ↑

Logic Environment(ΓL) 𝜁 : (V × T) → (L→ P(E) → P(E))
𝜁 := ⊥ | 𝜁 [(X , t) ↦→ f]

Position
Position i := 𝓁 | 𝓇

Location
Location(L) l := 𝜖 | l ⊲ i | i ⊳ l

Location in a Tree
+ (𝜖)

3 (𝜖 ⊲ 𝓇)1 (𝜖 ⊲ 𝓁)

Shoggoth: A Formalised Logic for Strategic Rewriting 27

Location Based Weakest Precondition Calculus for System S - Basics (1)

Helper partial functions
update : L→ E→ P¬∅ (E ∪ {err} ∪ {div}) → P¬∅ (E ∪ {err} ∪ {div})
update(𝜖 , e, xs) = xs

update(𝓁 ⊳ l,
n

e2e1
, xs) = {

n

e2x
| x ∈ update(l, e1, xs) ∩ E} ∪ (xs ∩ {err, div})

update(𝓇 ⊳ l,
n

e2e1
, xs) = {

n

xe1
| x ∈ update(l, e2, xs) ∩ E} ∪ (xs ∩ {err, div})

lookup : L→ E→ E
lookup(𝜖 , e) = e

lookup(𝓁 ⊳ l,
n

e2e1
) = lookup(l, e1)

lookup(𝓇 ⊳ l,
n

e2e1
) = lookup(l, e2)

Shoggoth: A Formalised Logic for Strategic Rewriting 28

Weakest Precondition for Total Correctness

Definition
wps@l𝜁 (P) = Q (wps : L→ ΓL → P(E) → P(E))

If for a set of expressions described by the postcondition P, a non-empty set of
expressions described by the precondition Q can be found,

then each expression in the precondition set will be successfully transformed into an
expression in the postcondition set, by applying strategy s at location l in the logic
environment 𝜁 .

Shoggoth: A Formalised Logic for Strategic Rewriting 29

Weakest May Error Precondition

Definition
wp↑s@l𝜁 (P) = Q (wp↑s : L→ ΓL → P(E) → P(E))

If for a set of expressions described by the postcondition P, a non-empty set of
expressions described by the precondition Q can be found,

then each expression in the precondition set will be successfully transformed into an
expression in the postcondition set or result in error, by applying strategy s at location
l in the logic environment 𝜁 .
It is used for defining the weakest precondition for total correctness.

Shoggoth: A Formalised Logic for Strategic Rewriting 30

Definition of Unsuccessful Execution

A strategy cannot execute successfully
wps@l𝜁 (U) = ∅

⇒
The strategy s cannot execute successfully on any input expression.

wps@l𝜁 (P) = ∅
⇒

The strategy s cannot transform the any input expression into an output expression in P.

Invalid input expression
e ⇒ wps@l𝜁 (U) ≠ ∅ ∧ e ∉ wps@l𝜁 (U)

⇒
The strategy s cannot execute successfully on the input expression e.

e ⇒ wps@l𝜁 (P) ≠ ∅ ∧ e ∉ wps@l𝜁 (P)
⇒

The strategy s cannot transform the input expression e into an output expression in P.

Shoggoth: A Formalised Logic for Strategic Rewriting 31

A Strategy Is Not Well-Composed

Example
addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ aaddcom ; multcom (Bad?)

Wp for atomic strategy
wpatomic@l𝜁 (P) = {e | update(l, e, ⟦atomic⟧⊥(lookup(l, e))) ⊆ P}

wp↑atomic@l𝜁 (P) = {e | update(l, e, ⟦atomic⟧⊥(lookup(l, e))) ⊆ P ∪ {err}}

Wp for addcom and multcom
wpaddcom@𝜖 𝜁 (U) = {e | e = App (+) m n} wpmultcom@𝜖 𝜁 (U) = {e | e = App (∗) m n}

Wp of sequential composition
wps ; t@l𝜁 (P) = wps@l𝜁 (wpt@l𝜁 (P)) wp↑s ; t@l𝜁 (P) = wp

↑
s@l𝜁 (wp

↑
t@l𝜁 (P))

Checking invalid composition
wpaddcom ;multcom@𝜖 𝜁 (U) = ∅ (Bad!)

Shoggoth: A Formalised Logic for Strategic Rewriting 32

A Strategy Is Not Well-Composed for Desired Output

Example
multzero : 0 ∗ a⇝ 0 multcom : a ∗ b⇝ b ∗ a

e
multcom<+>multzero ;multcom {e | e = App (∗) 0 m} (Bad?)

Wp of non-deterministic choice
wps<+>t@l𝜁 (P) = (wp↑t@l𝜁 (P) ∩ wps@l𝜁 (P)) ∪ (wp↑s@l𝜁 (P) ∩ wpt@l𝜁 (P))

wp↑s<+>t@l𝜁 (P) = wp
↑
s@l𝜁 (P) ∩ wp

↑
t@l𝜁 (P)

Checking invalid composition for P
wpmultcom<+>multzero ;multcom@𝜖 𝜁 ({e | e = App (∗) 0 m}) = ∅ (Bad!)

Shoggoth: A Formalised Logic for Strategic Rewriting 33

Invalid Input

Example
addcom : a + b⇝ b + a multcom : a ∗ b⇝ b ∗ a

3 ∗ 6
multcom<+addcom ;multcom 3 ∗ 6 3 + 6

multcom<+addcom ;multcom err

Wp of left choice
wps<+t@l𝜁 (P) = wps@l𝜁 (P) ∪ (wp↑s@l𝜁 (P) ∩ wpt@l𝜁 (P))

wp↑s<+t@l𝜁 (P) = wps@l𝜁 (P) ∪ (wp↑s@l𝜁 (P) ∩ wp
↑
t@l𝜁 (P))

Checking Invalid Input
wpmultcom<+addcom ;multcom@𝜖 𝜁 (U) = {e | e = App (∗) a b}
3 ∗ 6 ∈ {e | e = App (∗) a b} (Good!)

3 + 6 ∉ {e | e = App (∗) a b} (Bad!)

Shoggoth: A Formalised Logic for Strategic Rewriting 34

Invalid Input for A Desired Output

Example
multzero : 0 ∗ a⇝ 0 multcom : a ∗ b⇝ b ∗ a

3 ∗ 4
multcom<+multzero ;multcom

? {e | e = App (∗) 0 m}

Checking invalid input for P
wpmultcom<+multzero ;multcom@𝜖 𝜁 ({e | e = App (∗) 0 m}) = {e | e = App (∗) 0 m}
3 ∗ 4 ∉ {e | e = App (∗) 0 m} (Bad!)

Shoggoth: A Formalised Logic for Strategic Rewriting 35

Detect Divergence (0)

The given strategy will diverge, i.e., will not lead to any successful execution.

Example
repeat(SKIP) Bad?

Wp of fixed point operator
wp𝜇X .s@l𝜁 (P) = [LFP𝒳 : Δ] (l) (P) wp↑

𝜇X .s@l𝜁 (P) = [LFP𝒴 : Δ] (l) (P)

Where:

Δ =

{
𝒳(l) (P) = wps@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P)
𝒴(l) (P) = wp↑s@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P)

wpX@l𝜁 (P) = 𝜁 (X , ·) (l) (P) (where 𝜁 (X , ·) def.)

wp↑X@l𝜁 (P) = 𝜁 (X ,↑)(l) (P) (where 𝜁 (X ,↑) def.)

Shoggoth: A Formalised Logic for Strategic Rewriting 36

Detect Divergence (1)

Example
repeat(SKIP) Bad?

Wp for repeat
wp𝜇X .try(s ; X)@l𝜁 (P) = wp↑𝜇X .try(s ; X)@l𝜁 (P) = [LFP𝒳 : Δ] (l) (P)

Where:

Δ = 𝒳(l) (P) = wps@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→ 𝒳] (𝒳(l) (P))
∪ (wp↑s@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→ 𝒳] (𝒳(l) (P)) ∩ P)

Checking divergence
wprepeat(SKIP)@𝜖 𝜁 (U) = ∅ Bad!

Shoggoth: A Formalised Logic for Strategic Rewriting 37

Detect Divergence - Demonic Non-determinism

We take divergence seriously — a strategy which can either diverge or successfully
execute leads to diverge.

Example
SKIP <+> repeat(SKIP) Bad?

Checking divergence
wpSKIP<+>repeat(SKIP)@𝜖 𝜁 (U) = ∅ Bad!

Shoggoth: A Formalised Logic for Strategic Rewriting 38

Reasoning About Traversals - One (0)

Example

addcom : a + b⇝ b + a
+

36

one(addcom) err

+
+

96

+
31

one(addcom)
+

+
96

+
13

Wp of one
wpone(s)@l𝜁 (P) = (wp↑s@l⊲𝓁𝜁 (P) ∩ wps@l⊲𝓇𝜁 (P)) ∪ (wp↑s@l⊲𝓇𝜁 (P) ∩ wps@l⊲𝓁𝜁 (P))

wp↑one(s)@l𝜁 (P) = {e | lookup(l, e) = Id} ∪ (wp↑s@l⊲0𝜁 (P) ∩ wp
↑
s@l⊲1𝜁 (P))

Shoggoth: A Formalised Logic for Strategic Rewriting 39

Reasoning About Traversals - One (1)

Checking invalid input

wpone(addcom)@𝜖 𝜁 ({e | e = App (∗) 0 m}) = {e | e =
x

er+
nm

} ∪ {e | e =
x

+
nm

el }

+
36

∉ {e | e =
x

er+
nm

} ∪ {e | e =
x

+
nm

el } Bad!

+
+

96

+
31

∈ {e | e =
x

er+
nm

} ∪ {e | e =
x

+
nm

el } Good!

Shoggoth: A Formalised Logic for Strategic Rewriting 40

Reasoning About Traversals - Top Down (0)

Example
∗

∗

∗

96

3

1 topDown(addcom)
err

∗

∗

+

96

3

1 topDown(addcom)

∗

∗

+

69

3

1

Wp of top down
wp𝜇X .s<+one(X)@l𝜁 (P) = [LFP𝒳 : Δ] (l) (P) wp↑

𝜇X .s<+one(X)@l𝜁 (P) = [LFP𝒴 : Δ] (l) (P)

Where:

Δ =

𝒳(l) (P) = wps@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P) ∪ (wp↑s@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P)

∩ ((𝒴(l ⊲ 𝓁) (P) ∩𝒳(l ⊲ 𝓇) (P)) ∪ (𝒴(l ⊲ 𝓇) (P) ∩𝒳(l ⊲ 𝓁) (P))))
𝒴(l) (P) = wps@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P) ∪ (wp↑s@l𝜁 [(X , ·) ↦→ 𝒳 , (X ,↑) ↦→𝒴] (P)

∩ (𝒴(l ⊲ 𝓁) (P) ∩𝒴(l ⊲ 𝓇) (P)))

Shoggoth: A Formalised Logic for Strategic Rewriting 41

Reasoning About Traversals - Top Down (1)

Checking invalid input
wptopDown(addcom@𝜖 𝜁 (U) = {e | ∃l. lookup l e =

+
nm
}

∗
∗
+

96

3

1
∈ {e | ∃l. lookup l e =

+
nm
} Good!

∗
∗

∗
96

3

1
∉ {e | ∃l. lookup l e =

+
nm
} Bad!

Shoggoth: A Formalised Logic for Strategic Rewriting 42

Our Weakest Precondition is Sound w.r.t. the Denotational Semantics

Soundness Theorems

∀X l P. 𝜁 (X , ·) (l) (P) = {e | update(l, e, (𝜉 (X) (lookup(l, e)))) ⊆ P}
∧𝜁 (X ,↑)(l) (P) = {e | update(l, e, (𝜉 (X) (lookup(l, e)))) ⊆ P ∪ {err}}

wps@l𝜁 (P) = {e | update(l, e, ⟦s⟧𝜉 (lookup(l, e))) ⊆ P}

(Weakest Precondition for Total Correctness)

∀X l P. 𝜁 (X , ·) (l) (P) = {e | update(l, e, (𝜉 (X) (lookup(l, e)))) ⊆ P}
∧𝜁 (X ,↑)(l) (P) = {e | update(l, e, (𝜉 (X) (lookup(l, e)))) ⊆ P ∪ {err}}

wp↑s@l𝜁 (P) = {e | update(l, e, ⟦s⟧𝜉 (lookup(l, e))) ⊆ P ∪ {err}}

(Weakest May Error Precondition)

Shoggoth: A Formalised Logic for Strategic Rewriting 43

Conclusion and Furure Work

Conclusion
• We present the formalised denotational semantics of System S and

demonstrate the correspondence (potentially equivalence) between the
denotational semantics and big-step operational semantics.

• We present the formalised weakest precondition calculus for System S and
demostrated the usage of the weakest precondition calculus for reasoning
about the execution of strategies.

Future Work
• Rewriting expressions represented in other forms such as graphs?

• Using weakest precondition calculus for automatic reasoning about the
execution of strategies?

Shoggoth: A Formalised Logic for Strategic Rewriting 45

We were on the track ahead as the nightmare plastic column of foetid black iridescence oozed tightly onward through its fifteen-foot sinus;
gathering unholy speed and driving before it a spiral, re-thickening cloud of the pallid abyss-vapour. It was a terrible, indescribable thing
vaster than any subway train—a shapeless congeries of protoplasmic bubbles, faintly self-luminous, and with myriads of temporary eyes
forming and unforming as pustules of greenish light all over the tunnel-filling front that bore down upon us, crushing the frantic penguins
and slithering over the glistening floor that it and its kind had swept so evilly free of all litter. Still came that eldritch, mocking cry —
“Tekeli-li! Tekeli-li!” And at last we remembered that the daemoniac shoggoths — given life, thought, and plastic organ patterns solely by
the Old Ones, and having no language save that which the dot-groups expressed — had likewise no voice save the imitated accents of their
bygone masters. —H. P. Lovecraft ”From the Mountains of Madness”[3]

Thank you

Xueying Qin [xueying.qin@ed.ac.uk]

Shoggoth: A Formalised Logic for Strategic Rewriting 45

Bastian Hagedorn, Johannes Lenfers, Thomas Kœhler, Xueying Qin, Sergei Gorlatch,
and Michel Steuwer.
Achieving high-performance the functional way: A functional pearl on
expressing high-performance optimizations as rewrite strategies.
Proc. ACM Program. Lang., 4(ICFP), aug 2020.

Markus Kaiser and Ralf Lämmel.
An isabelle/hol-based model of stratego-like traversal strategies.
In Proceedings of the 11th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, PPDP ’09, page 93–104, New York, NY, USA, 2009.
Association for Computing Machinery.

Howard P. Lovecraft.
At the mountains of madness.
1931.

Shoggoth: A Formalised Logic for Strategic Rewriting 46

Eelco Visser.
Stratego: A language for program transformation based on rewriting
strategies system description of stratego 0.5.
In Aart Middeldorp, editor, Rewriting Techniques and Applications, pages 357–361,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Eelco Visser and Zine el Abidine Benaissa.
A core language for rewriting.
Electronic Notes in Theoretical Computer Science, 15:422–441, 1998.
International Workshop on Rewriting Logic and its Applications.

Shoggoth: A Formalised Logic for Strategic Rewriting 47

	0. Introduction
	1. Semantics of Our Strategic Rewriting Language
	2. Location Based Weakest Precondition Calculus
	3. Conclusion and Future Work

