
Studies Concerning the Meaning
of Computer Programs

Xueying Qin (秦雪莹)

The University of Edinburgh

March 20, 2024

Introduction
In my three-year short research journey, I have studies three projects concerning the
meaning of computer programs, specifically:

• How we model and understand programs;

• How we effectively communicate what we want computers to do in terms of
programs with computers;

• How we reason about the behaviours of programs.

Three Conceptual Questions and Three Projects

• How to design a better abstraction mechanism that allows programmers to
effectively express what they want a computer to do via some declarative yet
accurate specifications instead of how a computer should accomplish a task via
some concrete implementations?

◦ Primrose: Selecting Container Data Types by Their Properties

• How do we characterise the relationship between the syntax and semantics of
programming languages?

◦ Shoggoth: A Formal Foundation for Strategic Rewriting

• How do we intuitively understand distributed programs using the same conceptual
model as monolithic programs?

◦ Oxidising Remote Procedural Calls

Studies Concerning the Meaning of Computer Programs 2

Primrose:
Selecting Container Data
Types by Their Properties

Xueying Qin1

Liam O’Connor1, Michel Steuwer1 2
1 The University of Edinburgh 2 Technische Universität Berlin

Motivation: An Existing Problem of Container Types

• Problem: programmers have to choose a concrete implementation of a container
type which is overly specific.

• Drawbacks: the chosen concrete implementation might not provide the desirable
performance and portability of programs is limited.

Studies Concerning the Meaning of Computer Programs 3

The Design of Primrose

• Application programmers specify expected behaviours of a container in a program instead
of how the container is implemented as property specifications;

◦ A syntactic property specifies operations to interact with a container:
∗ We model it as a trait
∗ E.g., iterable - elements can be accessed by an iterator

◦ A semantic property specifies the desired behaviours of existing operations:
∗ We model it as a logic predicate refining a container type
∗ E.g., unique - no duplicated elements in a container, it does not introduce any new operation

• Primrose, our pre-processing tool, selects all implementations from a container library
where their library specifications match the desired property specifications;

• Primrose then chooses a best implementation (i.e., fastest, least memory consumption) for
the program.

Studies Concerning the Meaning of Computer Programs 4

Overview of Primrose

Figure 1: The workflow of the Primrose selection tool
Studies Concerning the Meaning of Computer Programs 5

Property Specifications and Library Specifications

Property specification
property unique { \c −> (for_all_elems c (\a −> (is_unique_count a c)))}
type UniqueCon<T> = {c impl (ContainerT) | (unique c)}

• Semantic property unique as refinement

• Syntactic property ContainerT as trait

Library specification
• Taking the form of a Hoare triple for each operation,

defined w.r.t. a list model: {𝜙} op(A) {𝜓}
• The (absract) list model and the concrete implementation

forms a forward simulation:

𝛼−1; op(C) ⊆ op(A); 𝛼−1

◦ ◦

• •

op(A)

𝛼

op(C)

𝛼⊆

• Example: library specification for BTreeSet insertion:
{xs0. xs0 = remove-duplicates (sort xs0 <) } abs-insert {xs0 x xs. xs = model-insert xs0 x}

Studies Concerning the Meaning of Computer Programs 6

Selecting Valid Implementations

• Selecting container types in the library which implement specified syntactic properties
(traits);

• Selecting container types of which the library specification match the semantic property
specification, using the Z3 SMT solver:

◦ check there is no contradiction between the semantic property and each
precondition in the library specification;

◦ assume the semantic property holds before each operation;
◦ check if the resulting model list of each operation still satisfies the semantic property.

Studies Concerning the Meaning of Computer Programs 7

Summary of Our Contributions

• We show a new application of refinement types not—as previous work did—for
verification purposes, but to raise the level of abstraction for developers and to improve
the runtime performance of applications with container data types.

• We develop a new methodology to specify container libraries, amenable to our
selection process, making use of existing formal methods work such as data abstraction
and Hoare logic.

• We show the feasibility of Primrose, validate container implementations against
specifications and evaluate the efficiency of the selection process.

• Paper available (‹Programming› 2023):
https://doi.org/10.22152/programming-journal.org/2023/7/11

Studies Concerning the Meaning of Computer Programs 8

Shoggoth:
A Formal Foundation
for Strategic Rewriting

Xueying Qin1

Liam O’Connor1, Rob van Glabbeek1 3,
Peter Höfner2, Ohad Kammar1, Michel Steuwer1 4
1 The University of Edinburgh 2 Australian National University

3 UNSW 4 Technische Universität Berlin

Motivation: Importance of Strategic Rewriting Languages

• Strategic rewriting languages provide programmers with combinators and generic
traversals that allow them to:

• control the application of rewrite rules
• reuse rewrite rules

• Many application areas: program optimisation (ELEVATE [Hagedorn et al., 2020]),
writing interpreter/compiler for DSLs (Spoofax/Stratego [Visser, 2001]) etc.

• However, there is a lack of formal treatment.

Studies Concerning the Meaning of Computer Programs 9

Overview of Strategic Rewriting Languages

Atomic strategy
An atomic strategy is a rewrite rule:

addcom : a + b⇝ b + a addid : 0 + a⇝ a

multcom : a ∗ b⇝ b ∗ a
mapFusion : map f (map g xs) ⇝ map (f ◦ g) xs

Composed strategy
addcom ; addid addcom <+ multcom
repeat(mapFusion)

Strategy combinators
Strategy combinators compose
strategies together and controls the
application of atomic strategies:

s1 ; s2 sequential composition, apply s1 then s2
s1 <+ s2 left choice, if fail to apply s1 then s2
repeat(s) keep applying s until inapplicable

Studies Concerning the Meaning of Computer Programs 10

Introduction to System S and Expressions to be Rewritten

System S
System S [Visser and el Abidine Benaissa, 1998], the core calculus of strategic
rewriting languages like ELEVATE [Hagedorn et al., 2020], Stratego [Visser, 2001]
and Strafunski [Kaiser and Lämmel, 2009], contains atomic strategies (rewrite
rules), strategy combinators which compose strategies and traversals that
traverse the expression AST.

Expression
The expressions being rewritten by strategies are in the form of:

Expressions(E) e := Leaf |
n
ee

Studies Concerning the Meaning of Computer Programs 11

Syntax of Strategies

Strategy
Strategy (S) s := SKIP (Always succeeds) | ABORT (Always results in error)

| atomic (Atomic strategy)

| s1 ; s2 (Sequential composition)

| s1 <+ s2 (Left choice)

| s1 <+> t2 (Nondeterministic choice)

| one(s) (Apply s to one child, nondeterministic)

| some(s) (Apply s to as many children as possible, nondeterministic)

| all(s) (Apply s to all children, nondeterministic)

| X (Variable)

| 𝜇X .s (Fixed-point operator)

Studies Concerning the Meaning of Computer Programs 12

Importance of A Formal Understanding of Strategic Rewriting Languages

Strategies can go wrong
• Result in error - an atomic strategy is not defined for certain expressions or strategies are

not well composed, for example: addcom ; multcom

• Do not terminate - for example: repeat(SKIP)

• Do not rewrite an expression into desired form

Existing formal work is not sufficient
• Big-step operational semantics of System S without modelling divergence

[Visser and el Abidine Benaissa, 1998].

• Weakest preconditional calculus for System S using computational tree logic
(CTL) [Kieburtz, 2001]. It has following issues:

◦ not expressive enough to reason about nondeterminism in traversals
◦ problematic fixed-point operator construction
◦ soundness of the calculus is not proven

Studies Concerning the Meaning of Computer Programs 13

Summary of Our Contributions

• We provide the formal semantics of System S, including both denotational and
operational models.

◦ Featuring nondeterminism, errors, and divergence.
◦ Proving these two semantics models are equivalent via computational soundness and

adequacy,

• We provide the weakest precondition calculus for the strategic rewriting language.
◦ Proving its soundness w.r.t. the denotational semantics.

• We demonstrate how to use the weakest precondition calculus to prove properties of
strategic rewriting.

• All formalised semantics and calculus as well as proofs are mechanised in Isabelle/HOL.

• Paper available (POPL 2024): https://doi.org/10.1145/3633211

Studies Concerning the Meaning of Computer Programs 14

Oxidising
Remote Procedure Calls

Xueying Qin1 Dan Ghica2
1 The University of Edinburgh 2 Huawei Central Software Institute

Motivation: Challenges in Existing Remote Procedure Call (RPC) Design

• In distributed computing, a remote procedure call (RPC) allows a method invocation
to be executed on another computer on a shared network. Such a remote method
invocation has the same coding as a local invocation, without the programmer
explicitly coding the details for the remote interaction.

• It is hard to support location transparency, i.e., in most existing frameworks
(e.g., Java RMI), remote invocations do not have the same semantics as local
invocations.

• Memory management is hard in a distributed setting, for example, distributed
garbage collection is complicated.

Studies Concerning the Meaning of Computer Programs 15

A New Remote Procedure Call Design: Universal Method Invocation

We design a universal method invocation (UMI) library in Rust, where our remote invocations have the
same semantics as local invocations.

Why UMI?
• It allows applications to be migrated from a monolithic design to a distributed architecture without

massive changes to source code or the needs of high-level expertise in microservices.

• It gives support for advanced optimisations such as profile guided optimisation, which are not viable
if changing the deployment requires extensive re-coding.

Why Rust?
• Rust is high-level system programming language which guarantees memory safety and prevents

data races by its ownership rules for memory management and borrow checker for tracking object
lifetime of all references in a program during compilation.

• Since Rust has semantics that guarantees memory safety, we can extend such guarantees to the
distributed computing setting, allowing our UMI framework to provide safe remote method invocations.

Studies Concerning the Meaning of Computer Programs 16

Example: Deploying A Monolithic Program to Multiple Nodes

Key Idea: location transparency — a method invocation on a remote object
preserves the semantics of the method invocation on a local object.

#[gen_remote]
struct A { arg: u32 }

#[gen_remote]
impl A {

new(arg: u32) -> A {
A {arg: arg}

}
fun_owned(&self, a: A) {...}
fun_imm(&self, &a: A) {...}
fun_mut(&self, &mut a: A) {...}
.....

}

fn main() {
let a_remote = remote!(addr, A::new(10));

let a_local1 = A::new(1);
let a_local2 = A::new(2);
let mut a_local3 = A::new(3);

a_local1.fun_imm(&a_local2);
a_remote.fun_imm(&a_local2);

}

Studies Concerning the Meaning of Computer Programs 17

Argument Passing Semantics

Variable Binding Type Passing Semantics
owned pass by copy/ move

immutable reference pass by reference
mutable reference pass by mutable reference

Examples:

fn main() {
...
a_remote.fun_owned(a_local1); // pass by copy/move
a_remote.fun_imm(&a_local2); // pass by reference
a_remote.fun_mut(&mut a_local3); // pass by mutable reference

}

Studies Concerning the Meaning of Computer Programs 18

Distributed Resource Management

On a UMI server, we use a table with the same lifetime of the server to identify and
manage local resources involved in remote computations.

• Rust borrow checker is generalised to work over the multiple nodes and handle remote allocation,
access, modification and deallocation.

• If a variable is created locally, it will be put into the table once it is passed into a remote
computation. The entry will not be removed (this table will ensure it is not deallocated) until the
remote computation finishes.

• If a variable is created via a remote call, it will be put into table on creation. It will be deallocated
when its remote owner decides to drop it.

Studies Concerning the Meaning of Computer Programs 19

Summary of Our Contributions

• We provide a usable Rust implementation of the UMI framework.

• We formalise the structural operational semantics for a core calculus of monolithic and
distributed Rust programs.

• We prove a location transparency theorem: With the UMI framework, when a monolithic
program is deployed to multiple nodes, its semantics is preserved.

• The research results are currently under preparation to be submitted to a conference.

Studies Concerning the Meaning of Computer Programs 20

Finale
Three Years, Three Conceptual Questions and Three Projects

• How to design a better abstraction mechanism that allows programmers to effectively
express what they want a computer to do via some declarative yet accurate specifications
instead of how a computer should accomplish a task via some concrete implementations?

◦ Primrose: Selecting Container Data Types by Their Properties

• How do we characterise the relationship between the syntax and semantics of
programming languages?

◦ Shoggoth: A Formal Foundation for Strategic Rewriting

• How do we intuitively understand distributed programs using the same conceptual model
as monolithic programs?

◦ Oxidising Remote Procedural Calls

Thank you!

Xueying Qin [xueying.qin@ed.ac.uk]
[https://xyunknown.github.io]

Studies Concerning the Meaning of Computer Programs 21

Hagedorn, B., Lenfers, J., Kœhler, T., Qin, X., Gorlatch, S., and Steuwer, M. (2020).
Achieving high-performance the functional way: A functional pearl on
expressing high-performance optimizations as rewrite strategies.
Proc. ACM Program. Lang., 4(ICFP).

Kaiser, M. and Lämmel, R. (2009).
An isabelle/hol-based model of stratego-like traversal strategies.
In Proceedings of the 11th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, PPDP ’09, page 93–104, New York, NY, USA. Association
for Computing Machinery.

Studies Concerning the Meaning of Computer Programs 22

Kieburtz, R. B. (2001).
A logic for rewriting strategies.
Electronic Notes in Theoretical Computer Science, 58(2):138–154.
STRATEGIES 2001, 4th International Workshop on Strategies in Automated Deduction -
Selected Papers (in connection with IJCAR 2001).

Visser, E. (2001).
Stratego: A language for program transformation based on rewriting
strategies system description of stratego 0.5.
In Middeldorp, A., editor, Rewriting Techniques and Applications, pages 357–361,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Visser, E. and el Abidine Benaissa, Z. (1998).
A core language for rewriting.
Electronic Notes in Theoretical Computer Science, 15:422–441.
International Workshop on Rewriting Logic and its Applications.

Studies Concerning the Meaning of Computer Programs 23

Studies Concerning the Meaning of Computer Programs 24

