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Introduction



An Existing Problem of Container Types

• Problem: programmers have to choose a concrete implementation of a container
type which is overly specific.

• Drawbacks: the chosen concrete implementation might not provide the desirable
performance and portability of programs is limited.
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An Existing Problem of Container Types - Example

When we write a program to gather a collection of unique elements and then to lookup a
certain one:

What we have to write:

fn main() {
let mut c = BTreeSet::<u32>::new();
...

}
/* OR */
fn main() {

let mut c = HashSet::<u32>::new();
...

}
...

Figure 1: We have to choose a concrete
implementation of a unique container when
writing the program

What we want to write:

fn main() {
let mut c = UniqueCon::<u32>::new();
let data = raw_data();
for val in data.iter() {
c.insert(*val);

}
c.contains(&1024);

}

Figure 2: What we need is a container type
representing a collection of unique elements in
the program
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Performance Benchmarks of Example Programs
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Figure 3: Different choices of concrete container implementations result in different performance
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Observations

• What is actually needed in this program is a container of unique elements;
• However a programmer has to commit to a concrete container implementation when
writing the program;

• For a program requiring many consecutive insertions, if the programmer chooses a
BTreetSet or HashSet as the implementation of the container of unique elements,
this program will not achieve the best performance.
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Existing Approach Trying to Address This Problem - Abstract Data Types

• Abstract Data Types (ADTs): defined from the perspective of users, as a class of
objects that is characterised by operations available for the objects.

• ADTs in practice: in some PLs, an ADT can be modelled as an interface allowing
different underlying implementations.

• Limitations:
• The default implementation choice is always the one optimised for the average case; it
does not provide the desirable performance or memory efficiency for all usage cases.

• ADTs are insufficient for describing the programmer’s expected behaviours of the
container in a program in a way that can be used by a compiler for selecting a best
implementation (i.e., fastest, least memory consumption).
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Our Proposed Design

• Application programmers specify expected behaviours of a container in a program
instead of how the container is implemented as property specifications;

• A syntactic property specifies operations to interact with a container:
• We model it as a trait
• E.g., iterable - elements can be accessed by an iterator

• A semantic property specifies the desired behaviours of existing operations:
• We model it as a logic predicate refining a container type
• E.g., unique - no duplicated elements in a container, it does not introduce any new operation

• Primrose, our pre-processing tool, selects all implementations from a container
library where their library specifications match the desired property specifications;

• Primrose then chooses a best implementation (i.e., fastest, least memory
consumption) for the program.
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Overview of Primrose

Figure 4: The workflow of the Primrose selection tool
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Example Usage - User Program

To write a program, instead of picking a concrete container implementation, a
programmer only need to specify what syntactic and semantic properties should be
satisfied by the required container type as below:

property unique {
\c -> (for_all_elems c (\a -> (is_unique_count a c)))

}
type UniqueCon<T> = {c impl (ContainerT) | (unique c)}

fn main () {
let mut c = UniqueCon::<u32>::new();
let data = raw_data();
for val in data.iter() {

c.insert(*val);
}
c.contains(&1024);

}

Figure 5: Example of a user program 9



Example Usage - Generated Programs

Our pre-processor selects all container implementations which satisfies the property
specification from the library. For each selected container implementation, a program like
below is generated, replacing the declared type UniqueCon<T> with the implementation:

type UniqueCon<T> = library::UniqueVec<T>;

fn main () {
let mut c = UniqueCon::<u32>::new();
let data = raw_data();
for val in data.iter() {

c.insert(*val);
}
c.contains(&1024);

}

Figure 6: One of generated programs with a possible library container implementation choice

We then rank the generated implementations to determine the best one. 10



Property Specification



Overview

In the above example, a programmer specifies the expected behaviours of the container
in the program as property specifications:

property unique {
\c -> (for_all_elems c (\a -> (is_unique_count a c)))

}
type UniqueCon<T> = {c impl (ContainerT) | (unique c)}

Figure 7: Example of a property specification

It says, the desired container type UniqueCon<T> needs to implement all operations
declared in the trait ContainerT and contains no duplicated element.
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Semantic Properties as Type-Level Refinements

• Semantic property declaration:

property unique { \c -> (for_all_elems c (\a -> (is_unique_count a c))) }

• Type of unique: Con〈T〉 → Bool
• Con〈T〉 is a placeholder container type that will be resolved into concrete container types
in the library;

• for_all_elems is a predefined combinator for encoding semantic properties as
measurements held by elements inside a container; is_unique_count is a build-in
measurement function.

• Semantic property are used as refinement in the container type declaration:

type UniqueCon<T> = {c impl (ContainerT) | (unique c)}

• The declared type UniqueCon〈T〉 is a placeholder container type Con〈T〉 refined by the
property unique;

• It will be resolved into concrete container types that satisfy the property unique.
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More Semantic Properties and Their Compositions

• Other than unique, we can also encode other semantic properties with different
combinators:

• Elements inside a container are sorted in ascending order:

property ascending { \c -> (for_all_consecutive_pairs c leq) }

• Elements inside a container are sorted in descending order:

property descending { \c -> (for_all_consecutive_pairs c geq) }

• We can also compose semantic properties in a container type declaration:

type UniqueAscendingCon<T> =
{c impl (ContainerT) | ((unique c) and (ascending c))}
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Syntactic Properties as Bounds of Container Types

• Syntactic properties are modelled as traits in Rust, specifying operations to interact
with the container.

• Syntactic property as bound in the container type declaration:

type UniqueCon<T> = {c impl (ContainerT) | (unique c)}

• The trait ContainerT is a syntactic property;
• The declared type UniqueCon〈T〉 is a placeholder container type Con〈T〉 providing
operations specified by ContainerT;

• It will be resolved into concrete container types that implement ContainerT.
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How Syntactic Properties Interact with Semantic Properties

Some semantic properties are defined on operations specified by syntactic properties.
For example:

• on top of the basic ContainerT trait, we define a StackT trait providing push and pop
operations:

pub trait StackT<T> {
fn push(&mut self, elt: T);
fn pop(&mut self) -> Option<T>;

}

• then the semantic property last-in-first-out (LIFO) can be defined as:

property lifo { \c <: StackT -> (forall \x. pop (push c x) == x) }

• to specify a container implements StackT with the property LIFO:

type StackCon<T> = {c impl (ContainerT, StackT) | (lifo c)}
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Library Specification



Why We Need Library Specifications

• It is hard to select container implementations from the library by checking if
concrete implementations satisfy property specifications;

• We need library specifications which abstract over implementations, allowing us to:
• verify if a container implementation satisfies its library specification;
• select container implementations by checking if their library specifications satisfy
property specifications.
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The Design of Library Specifications

Library specifications of concrete container implementations are developed based on
Hoare logic. For each concrete container implementation, we provide a set of Hoare
triples, one for each operation:

{𝜙} op {𝜓}

• If the precondition 𝜙 holds and the operation op is executed, then the postcondition
𝜓 will hold.

• We define the precondition and postcondition of each operation in terms of an
abstract list model.
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Library Specifications Convey the Intended Semantics for Implementations (1)

• It is important that library specifications capture all possible executions of the
concrete implementation;

• The proof of the functional correctness takes the form of a data refinement, where
• each value of the concrete container type is related to our list model by an abstraction
function 𝛼

• our specification on lists is shown to contain all possible behaviours of the concrete
implementation using a forward simulation:

𝛼−1;op(C) ⊆ op(A);𝛼−1

(where ; is forward composition of relations)

◦ ◦

• •

op(A)

𝛼

op(C)

𝛼⊆

Figure 8: Forward simulation
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Library Specifications Convey the Intended Semantics for Implementations (2)

If such a forward simulation is shown for all of our container operations, each possible
execution involving the concrete container has a corresponding execution involving an
abstract list, and thus the specification accurately captures the semantics of our
implementation.
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Example - The Insertion Operation of BTreeSet

For example, for the insertion operation of the BTreeSet from Rust collection library,
which is a set implementation based on a B-Tree, with signature:

pub fn insert(&mut self, value: T) {...}

Figure 9: Signature of BTreeSet::insert
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Example - The Library Specification of BTreeSet’s Insertion Operation (1)

• The model logic list is a list of unique elements which are sorted in ascending order;
• We abstract this BTreeSet in to a the list model by applying an abstraction function
inorder that does a in-order traversal;

• The corresponding abstract operation defined on the list has (moral) type signature:

abs-insert: List<T> -> T -> List<T>

Figure 10: Signature of BTreeSet::insert’s corresponding abstract operation
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Example - The Library Specification of BTreeSet’s Insertion Operation (2)

We write its library specification:

{xs0. xs0 = remove-duplicates (sort xs0 <)} abs-insert {xs0 x xs. xs = model-insert xs0 x}

Figure 11: Specification of BTreeSet::insert

Where the list-insert is the insertion function defined on a logic list which is unqiue
and sorted in ascending order:

(define (model-insert xs x) (remove-duplicates (sort (append xs (list x)) <)))
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Example - Verifying An Operation’s Implementation Satisfying Its Specification

To check if the BTreeSet’s insertion operation satisfies the specification:

1. assume the precondition holds, y0 is a unique logic list that is sorted in ascending
order

2. check if the postcondition holds, i.e., if ys equal to the result of the corresponding
insertion operation defined on a logic list

Since we can verify each operation implementation of a container w.r.t its library
specification, we represent each container by its library specification in the
implementation selection process.
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Selecting Valid Implementations



Overview

Two steps of selecting implementations from the library:

1. Selecting container types in the library which implement specified syntactic
properties (traits);

2. Selecting container types of which the library specification match the semantic
property specification.

The first step can be simply handled by checking whether a container implementation
implements the traits specified in a property specification, we mainly discuss the second
step here.
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The Process of Selecting Valid Implementations (1)

For each semantic property in a property specification and each library specification:

1. check there is no contradiction between the semantic property and each
precondition in the library specification;

2. assume the semantic property holds before each operation;
3. check if the resulting logic list of each operation still satisfies the semantic property.

This process is implemented using a SMT solver (Z3), more specifically, we interact with
the solver using Rosette, which is a solver-aided programming language.
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The Process of Selecting Valid Implementations (2)

• In general, the library specification of each operation takes the form of:

{𝜙(xs0, ®u)} op {𝜓(xs0, xs, ®v)}

• The general form of the verification condition Primrose generates for the SMT solver,
to check if an operation op satisfies a property P:

∀ xs0 xs ®u ®v.
𝜙(xs0, ®u) 𝜓(xs, ®v)
P(xs0) ⇒ P(xs)

(where: ∃ xs0 ®u. P(xs0) ∧ 𝜙(xs0, ®u))

Figure 12: The rule for checking an operation against a property
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Example - Checking If BTreeSet is A Valid Unique Container Implementation

Recall the introduced property specification of a unique container:

property unique {
\c -> (for_all_elems c (\a -> (is_unique_count a c)))

}
type UniqueCon<T> = {c impl (ContainerT) | (unique c)}

Given the BTreeSet implements the trait ContainerT, we need to check if for each
operation of ContainerT implemented by the BTreeSet, the property unique holds.
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Example - Checking the Library Specification of insert

Recall the introduced library specification of the BTreeSet’s insertion operation:

{xs0. xs0 = remove-duplicates (sort xs0 <)} abs-insert {xs0 x xs. xs = model-insert xs0 x}

We check this specification against the property unique in a SMT solver according to:

∀ xs0 xs x.
xs0 = remove-duplicates (sort xs0 <) xs = model-insert xs0 x

unique xs0 ⇒ unique xs

(where: ∃ xs0. unique xs0 ∧ xs0 = remove-duplicates (sort xs0 <))
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Example - Checking If BTreeSet is A Valid Unique Container Implementation

• For each operation of ContainerT implemented by the BTreeSet, a similar checking
process is performed.

• If the property unique holds through all operations, the BTreeSet is a valid
implementation choice for the required unique container UniqueCon.
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Evaluation



Correctness of Library Implementations w.r.t Their Library Specifications

• We validate our Rust container library implementations against the library
specifications using property-based testing.

• For each test, 100 test inputs are randomly generated.
• For our library with eight container implementations, in total 7200 inputs are tested
in 7.315 seconds. All tests are passed successfully.
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Evaluation of Primrose’s Selection Time
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Figure 13: Primrose’s efficiency of selecting implementations for different properties. The figure
shows that Primrose selects in reasonable time from a medium-size collection of container
implementations.
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Future Work



Future Work

• Design a better ranking technique, allowing the best container implementation (in
terms of run-time performance, memory footprints etc.) for a program to be selected;

• Formally verify the container implementations in a library satisfy their library
specifications.
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Thank you \(̂-̂)/
Xueying Qin [xueying.qin@ed.ac.uk]
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