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Abstract

Rewrite rules in LIFT are used for generating optimised code but their correctness is not fully
justified. In this project, mechanical proofs are developed in Agda for the verification of their
correctness. Semantics of LIFT’s data types and primitives are defined and their correctness are
justified. Most of LIFT’s rewrite rules are proven to be correct while some incorrect and inaccurate
rules are fixed and clarified. Strategies of proving rewrite rules over array and multi-dimensional
array operations are also discussed.
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1 Introduction

1.1 Motivation
The rewrite system of LIFT systematically transforms programs composed of high-level algo-
rithmic patterns into low-level high performance OpenCL code with equivalent functionality.
During this process, a set of rewrite rules are applied, each encoding an implementation of opti-
misation choice. Ensuring the correctness of these rules is important for ensuring the program’s
original functionality is not altered during the rewrite process.

Currently, the correctness of these rules is only proven on paper and only for a subset of the used
rules. Although the correctness of some rules can be pointed out straightforwardly, for example,
the map fusion rule provided by Steuwer (2015):

<0? 5 ◦<0? 6→<0? (5 ◦ 6)

which fuses two consecutive map operations in function composition; the correctness of some
rules is obscure, take the tiling rule (Hagedorn et al. 2018) as an example:

<0? 5 ◦ B;834 B8I4 BC4? → 9>8= ◦<0? (_ C8;4.<0? 5 ◦ (B;834 B8I4 BC4? C8;4)) B;834 D E

it is difficult to tell the left-hand side of the arrow has the same functionality as the right-hand
side of the arrow from sheer observation.

Moreover, existing paper proofs do not use standard proof techniques such as proof by induction
and proof by contradiction. For example, the map fusion rule is proven as (Steuwer 2015):

Let GB = [G1, ...,G=].
(<0? 5 ◦<0? 6) GB =<0? 5 (<0? 6 GB)

=<0? 5 [6 G1, ...,6 G=] definition of map
= [5 (6 G1), ..., 5 (6 G=)] definition of map
= [(5 ◦ 6) G1, ..., (5 ◦ 6) G=] definition of ◦, definition of map
=<0? (5 ◦ 6) GB

Although conceptually this is a correct proof, it does not have formal proof structures or stress
on what conditions should 5 , 6 and GB satisfy. In general, these paper proofs are not convincing
enough and sometimes can be wrong.

Thus, in this project a set of mechanical proofs in Agda will be developed to show the correctness
of the existing rules implemented in LIFT system and published in paper.

1.2 Aims
First of all, we would like to design concise and well-structured operational semantics for LIFT’s
patterns, which are introduced in chapter 3. Secondly, the validation of rewrite rules are produced
by equality reasoning in Agda. Different kinds of rules and strategies of developing proofs are
discussed (chapter 4). Base on the developed proofs, we further discuss if these rules are correct
and accurate, and revise the problematic ones.
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2 Background

2.1 LIFT
LIFT (Steuwer et al. 2015) is a high-level programming language which provides high per-
formance and code portability. LIFT achieves this via a rewrite-based system to transform
and optimise programs. Programmers express operations using a set of high-level functions,
such as map, reduce, split, join etc. The are called patterns in LIFT. During the compilation,
expressions containing these high-level patterns are rewritten into expressions with algorith-
mic optimisation strategies, for example, divide and conquer for parallel operations, and then
high-performance hardware specific code is generated accordingly in the code generation phase.
These strategies are defined as rewrite rules. The there different kinds of rewrite rules, such
as rewrite rules for algorithmic optimisations and rules for changing the orders of patterns in
expressions allowing algorithmic optimisations to be applied.

2.2 Curry-Howard Correspondence
Since we would like to use a set of computer programs to verify mathematical proofs, there needs
to be an equivalence relation between these two kinds of formalism. The one serves as the basis
of this project is Curry-Howard Correspondence, which was firstly discovered by Curry (1934):
a theory of functions can be related to a theory of implication; and later revisited by Howard
(1980): there exists correspondence between natural deduction and simply-typed lambda calculus.
This correspondence was then synthesised by Wadler (2015): propositions as types; proofs as
programs; simplification of proofs as evaluation of programs.

Following this paradigm, we are able to encode equality relations for stating rewrite rules as
types and develop programs which serve as proofs to justify these proposed equality relations.

2.3 Agda
Agda (Ulf et al.) is a dependently typed programming language, where the definition of each of
its types can depend on a value. It can be used as a proof assistant based on the proposition-as-type
paradigm. Data types are defined inductively in Agda with dependently typed pattern matching,
i.e., checking if a sequence of token matches a given pattern, which eliminates type errors of the
execution of a function by restricting the type checking on its input and output data types. This
feature is demonstrated in the following example.

Firstly, we define two data types, one is the natural number type and the other is an indexed
collection, where its type depends on its size:

-- Define the natural number type
data ℕ : Set where

zero : ℕ
suc : ℕ→ ℕ
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-- Define an indexed collection

data Vec (A : Set) : ℕ→ Set where
[] : Vec A zero
_::_ : {n : ℕ}→ A→ Vec A n→ Vec A (suc n)

It can be pointed out that there exists correspondence in the patterns of these two definitions: 1)
in the base case of Vec, the pattern of its size matches the pattern of the base case zero in the
definition of ℕ; 2) the constructor _::_ is defined with the pattern matching on size using suc in
the definition of ℕ.

Now we would like to define a function head, which returns the first element of an indexed
collection. Note that this function does not take an empty collection as input, as it is impossible
to get the first element from it since it does not contain any. To emphasise this restriction in the
definition, head is provided as:

head : {A : Set}→ {n : ℕ}→ Vec A (suc n)→ A
head (x :: xs) = x

In this definition, Agda normalise the input argument, which is an indexed collection with type
(Vec A (suc n)), into (x :: xs), since only the constructor _::_ matches the given pattern but not [].
Hence the restriction is reinforced in this definition.

More detailed information about defining data types and functions, as well as developing equality
reasoning will be introduced in chapter 3 and chapter 4, alongside developing semantics of
primitives and verification of rewrite rules.
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3 Semantics of LIFT in Agda

Introduced by Steuwer et al. (2015); Atkey et al. (2017), LIFT patterns have been formalised into
a set of mathematical expressions, for instance, the function map, which is a LIFT primitive, is
defined as:

map : {= : nat} → {B C : data} → (B → C) → =•B → =•C (3.1)

where nat is the natural number type and data can represent any data types, (B → C) represents
a function which takes in an arguments with data type B and returns a value with data type C .
=•B is an array which contains elements with data type B and has size =. In addition, braces and
parentheses are used for indicating implicit arguments and explicit arguments.

We define the operational semantics of LIFT patterns as functions in Agda base on those math-
ematical expressions, which describes the meaning of data types and the computation steps of
primitives.

3.1 Encoding LIFT data types in Agda
To define the semantics of primitives, we firstly need to encode some core LIFT data types in
Agda. In section 3.1.1, the representation of the set of data types, i.e., data, is introduced. In
section 3.1.2 and 3.1.3, the inductive definitions of the natural number type and the array type
are discussed.

3.1.1 The set of data types

In LIFT’s type system, data represents the set of data types, including the natural number type,
the array type, the index type etc. In Agda, we use the universe Set to encode LIFT’s data type.

Agda uses universes to resolve Russell’s paradox, which states that the collection of all sets cannot
be a set itself (Agda Developer Team). The universe Set is a collection of Agda types, for example,
both Bool and ℕ have the type Set. However, the Set itself cannot have the type Set, to give
Set a type, we can use a higher level of universe Set1. There are infinite number of universes,
each of which is an element of the next higher one.

3.1.2 Natural number type

We use the Agda built-in inductive definition of natural numbers to represent the natural number
type (Agda Developer Team 2020). The definition is shown as below:

-- The definition of natural numbers in Agda
data ℕ : Set where

zero : ℕ
suc : (n : ℕ)→ ℕ

It says to construct a natural number, we need: 1) a base case stating zero is a natural number
and 2) an inductive case stating if n is a natural number, then (suc n) is also a natural number.
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Following this definition of natural numbers, the addition option between two natural numbers
can be defined inductively:

-- The definition of natural number addition in Agda
_+_ : ℕ→ ℕ→ ℕ

zero + m = m
suc n + m = suc (n + m)

Then natural number multiplication can be defined as a repetition of addition:

-- The definition of natural number multiplication in Agda
_*_ : ℕ→ ℕ→ ℕ

zero * m = zero
suc n * m = m + n * m

3.1.3 Array type

The array type in LIFT represents an indexed collection of elements which have the same data
type. For example, the notation =•B in 3.1 means an array of type B elements with size =, where
= is a natural number. Formally, the array type is defined as:

Δ ` # : nat Δ ` ) : data
Δ ` # •)

Although there is no array type defined in the Agda standard library, the vector type Vec defined
as below satisfies the definition of LIFT’s array type:

-- The definition of an indexed collection data type in Agda

data Vec (A : Set a) : ℕ→ Set a where
[] : Vec A zero
_::_ : ∀ {n} (x : A) (xs : Vec A n)→ Vec A (suc n)

Note that in this definition, a is an arbitrary universe level and Set a is a universe at level a, a vector
can contain elements in any universe level hence the generality of the definition is preserved. The
constructors are able to construct vectors with the consideration of their indices, i.e., the number
of elements in a vector. The base case constructs a vector of zero elements and the inductive
case says that when never a new element is added, the indices are increased by one, while all the
elements in the vector remain unchanged.

Some functions are also defined to manipulate vectors. Firstly, a function to build a vector with
only element is introduced below:

-- Construct a vector with only one element
[_] : A→ Vec A 1
[ x ] = x :: []

For example, [ 1 ] builds a vector containing only one element which is the natural number 1.

Vector concatenation is defined by performing induction on the first vector as:

-- The definition of vector concatenation

_++_ : {m n : ℕ}→ Vec A m→ Vec A n→ Vec A (m + n)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

To avoid confusion in terminologies, although LIFT’s array type is encoded as the vector type in
Agda, we continue using “array” to refer to this data type in the rest of this paper.
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3.2 Encoding LIFT primitives in Agda
Based on the data types introduced in section 3.1, a set of LIFT’s primitives can be defined.
In section 3.2.1, the definition of some basic primitives including id, map, take, drop, split
and join are introduced. In section 3.2.2, primitives for reducing an array such as reduce and
partRed are defined. The transpose operation of a two-dimensional (2D) array is defined in
section 3.2.3 and finally in section 3.2.4, we formalise some functions for stencil computation,
which is an optimisation strategy for updating values in a multi-dimensional array by creating
neighbour values with fixed pattern (Hagedorn et al. 2018).

3.2.1 Basic primitives

The id primitive in LIFT can be viewed as an operation which copies a value. Its definition is
straightforward:

-- The definition of primitive id
id : {T : Set}→ T→ T
id t = t

It says the id primitive takes in an argument with an arbitrary type and returns the argument
itself. Note that in Agda braces indicate implicit arguments in declarations which are able to be
figured out by the compiler, thus we do not need to explicitly provide ) in the definition.

The map primitive, which is formally defined in 3.1, is an operation applying a given function to
every element in an array. It can be defined as below:

-- The definition of primitive map

map : {n : ℕ}→ {S T : Set}→ (S→ T)→ Vec S n→ Vec T n
map f [] = []
map f (x :: xs) = f x :: map f xs

It can be pointed out that the first line in the Agda code, which is the declaration, matches that
the mathematical formalisation in 3.1. Moreover, the computation steps are specified inductively
with a base case stating that applying map of a function to an empty array results an empty array;
and an inductive case stating that applying map of a function to a non-empty array yields applying
the function to the first element and then mapping the function to the rest of the array.

take and drop are a pair of opposite operations. Formally take is defined as:

take : (= : nat) → {< : nat} → {C : data} → (= +<)•C → =•C (3.2)

which means taking the first = elements from an array with size (= +<); and drop is defined as:

drop : (= : nat) → {< : nat} → {C : data} → (= +<)•C →<•C (3.3)

which is an operation discarding the first = elements from an array with size (= +<). We define
them in Agda as below:

-- The definition of primitive take

take : (n : ℕ)→ {m : ℕ}→ {T : Set}→ Vec T (n + m)→ Vec T n
take zero xs = []
take (suc n) {m} (x :: xs) = x :: (take n {m} xs)

-- The definition of primitive drop

drop : (n : ℕ)→ {m : ℕ}→ {T : Set}→ Vec T (n + m)→ Vec T m
drop zero xs = xs
drop (suc n) (x :: xs) = drop n xs
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Again, the computation steps are defined by induction, with base cases stating that taking/drop-
ping zero element from an array and inductive cases specifying taking/dropping at least one
element from an array.

Making use of the definition of take and drop, we can give the primitive split concise semantics.
split is an operation producing a multi-dimensional array by slicing an array into chunks with
a given size, which is formally defined as:

split : (= : nat) → {< : nat} → {C : data} →<=•C →<•=•C (3.4)

where the notation<=•C indicates an array with size (< ∗ =) and<•=•C is a multi-dimensional
array, i.e., a size< array of arrays with size =.

In Agda, we encode this operation as:

-- The definition of primitive split

split : (n : ℕ)→ {m : ℕ}→ {T : Set}→ Vec T (m * n)→ Vec (Vec T n) m
split n {zero} xs = []
split n {suc m} xs = take n {m * n} xs :: split n (drop n xs)

The inductive case is defined using take and drop, which means to split an array into at least one
chunk of size =, we take a size = chunk from it, and then build it with the result of splitting the
rest of the array.

The primitive join can be viewed as an opposite operation of split. It is an operation joining the
two outer dimensions of a multi-dimensional array, reducing the total number of its dimensions
by one. Formally it is defined as:

join : {= < : nat} → {C : data} → =•<•C →<=•C (3.5)

Again, its computation steps can be defined inductively in Agda:

-- The definition of primitive join

join : {n m : ℕ}→ {T : Set}→ Vec (Vec T n) m→ Vec T (m * n)
join [] = []
join (xs :: xs1) = xs ++ join xs1

The base case is straightforward, joining an empty array gives an empty array; the inductive case
states that joining an non-empty array means concatenating the first chunk of the array with the
result of joining the rest of the array.

3.2.2 Reduction primitives

In general, a reduction operation is to reduce an array into a single value. There are three
reduction primitives in LIFT: reduce, reduceSeq, and partRed (i.e., partial reduction).

The reduce primitive performs a reduction on an array with a given binary operator which
is associative and commutative, taking two arguments of the same type. reduceSeq is a more
general operation than reduce, which takes a binary operator (not required to be associative or
commutative) that is able to operating on two arguments with different types. The partRed
operation is more complicated, instead of reducing an array into a single element, it reduces an
array into an array, where its size is a given fraction of the original size.

We start with looking into the most general reduction operation, i.e., reduceSeq, which is
formally defined as:

reduceSeq : {= : nat} → {B C : data} → (B → C → C) → C → =•B → C (3.6)
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Note that (B → C → C) is a user specified binary operator, and C denotes the initial argument with
data type C . We define it in Agda as:

-- The definition of primitive reduceSeq

reduceSeq : {n : ℕ}→ {S T : Set}→ (S→ T→ T)→ T→ Vec S n→ T
reduceSeq f init [] = init
reduceSeq f init (x :: xs) = reduceSeq f (f x init) xs

The base case is when operating on an empty array, the resulting value will be the initial
argument 8=8C . The inductive case states that firstly the binary operator is applied on 8=8C and
the first element of the array, the resulting value will be used as the initial argument for the next
reduceSeq operation on the rest of the array.

Since the most general reduction primitive is defined, we can build the semantics of reduce upon
it. In the definition of reduce:

reduce : {= : nat} → {C : data} → (C → C → C) → C → =•C → C (3.7)

the binary operator (C → C → C) has a restriction to be both associative and commutative.
Moreover, the initial argument need to be an 83 element of the operator. An 83 element for
a binary operator means whenever it is taken by the operator with another argument, the
result is always the other argument. For instance, the natural number 0 is the 83 element of the
natural number addition (+), and the natural number 1 is the 83 element of the natural number
multiplication (∗).
In order to define reduce, we firstly need to define the type of these associative and commutative
operators with 83 elements:

-- The definition of associative and commutative operator

record CommAssocMonoid (A : Set) : Set1 where
field
Y : A
_⊕_ : A→ A→ A
id; : ∀ x→ Y ⊕ x ≡ x
idA : ∀ x→ x ⊕ Y ≡ x
assoc : ∀ x y z→ (x ⊕ y) ⊕ z ≡ x ⊕ (y ⊕ z)
comm : ∀ x y→ x ⊕ y ≡ y ⊕ x

We define this binary operator type as an Agda record type called CommAssocMonoid. The
record type in Agda is a group of values. In this CommAssocMonoid, Y is the 83 element for
a binary operator ⊕, id; and idA indicate the identity property of the 83 element Y; assoc and
comm indicate the associative and commutative properties of the operator ⊕.
Now the reduce primitive can be defined in Agda as:

-- The definition of primitive reduce

reduce : {n : ℕ}→ {T : Set}→ (M : CommAssocMonoid T)→ Vec T n→ T
reduce M xs = let _⊕_ = _⊕_ M; Y = Y M

in reduceSeq _⊕_ Y xs

Note that the let-expression is an abbreviation for name binding. This definition says the reduce
is an reduceSeq operation with the binary operator being associative and commutative. Also,
the initial argument has to be the 83 element of the operator.

Partial reduction is a more complicated operation, a definition is provided by Steuwer (2015):

?0AC'43 (⊕) 83⊕ GB : [U] =
<

(3.8)
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where both< and = are natural numbers. (⊕) is an associative and commutative binary operator
with the type (U → U → U) and 83⊕ denotes its 83 element having the type U . GB is an array of
type U elements with size =. The resulting array has the size =

<
.

More specifically, how the operation is done is defined as:

?0AC'43 (⊕) 83⊕ = [G1,G2, ...,G=] = [Gf (1) ⊕ ... ⊕ Gf (=) , ...,Gf (=−<+1) ⊕ ... ⊕ Gf (=) ] (3.9)

where f is a permutation function over the indices, meaning that the partial reduction is a
operation reducing an array without considering the elements’ order in it.

There are some limitations of this definition. Firstly, the size of the resulting array is expressed
as an fraction =

<
, however, it is not explicitly showing the requirement that =

<
being a natural

number, i.e., = is divisible by<. Secondly, the important restriction that the resulting array needs
to be a non-empty array is not stated.

We define the partial reduction operation as partRed in Agda as below. For the simplicity of the
definition, we do not consider the reordering of elements in the array at this stage:

-- The definition of primitive partRed

partRed : (n : ℕ)→ {m : ℕ}→ {T : Set}→
(M : CommAssocMonoid T)→ Vec T (suc m * n)→ Vec T (suc m)

partRed zero {zero} M [] = let Y = Y M
in [ Y ]

partRed (suc n) {zero} M xs = [ reduce M xs ]
partRed zero {suc m} M [] = let Y = Y M

in Y :: partRed zero {m} M []
partRed (suc n) {suc m} M xs = [ reduce M (take (suc n) {suc (n + (m * suc n))} xs) ]

++ partRed (suc n) {m} M ((drop (suc n) xs))

In this definition, instead of defining the size of the resulting array as a fraction, we define the
size of the input array as an multiplication of BD2 < and =, ensuring it is divisible by = according
to the requirement. Also, defining the size of resulting array as BD2 < indicates that the resulting
array cannot be empty.

3.2.3 Transpose

The transpose primitive is defined as the matrix transpose in linear algebra, which is an operation
producing a matrix by switching the row and column indices of the original matrix. Note that if
the input multi-dimensional array has more than two dimensions, the transpose operation will
be done on the two outer most dimensions. Formally, it is defined as:

transpose : {= < : nat} → {C : data} → =•<•C →<•=•C (3.10)

Before defining the transpose operation in Agda, we need to introduce three helper functions:
fill, head and tail as below:

-- Helpers for defining transpose

fill : {T : Set}→ (n : ℕ)→ T→ Vec T n
fill zero x = []
fill (suc n) x = x :: fill n x

head : {T : Set}→ {n : ℕ}→ Vec T (suc n)→ T
head (x :: xs) = x

tail : {T : Set}→ {n : ℕ}→ Vec T (suc n)→ Vec T n
tail (x :: xs) = xs
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fill is an operation constructing an array of = copies of an given argument G . head and tail are a
pair of opposite operations, head returns the first element of an given array while tail returns
the given array without the first element.

Making use of these three helper functions, we can define the transpose primitive as:

-- The definition of primitive transpose

transpose : {n m : ℕ}→ {T : Set}→ Vec (Vec T m) n→ Vec (Vec T n) m
transpose {suc n} {zero} xss = []
transpose {zero} {m} [] = fill _ []
transpose {suc n} {suc m} xss = map head xss :: transpose (map tail xss)

Slightly different for the definition of matrix transpose in linear algebra, we consider the situations
where the inner and outer dimensions have size zero. The first base case states that transposing
an array of empty arrays gives an empty array. The second base case says, if we would like to
transpose an empty array, the result will be an array of< empty arrays, where< is the given size
of the original inner dimension. Finally, the inductive case defines that when the sizes of both
dimensions are not zero, we take the heads of all the inner arrays, and build them with the result
of transposing tails of all the inner arrays.

3.2.4 Stencil computation primitives

In this section, some primitives introduced by Hagedorn et al. (2018) for enabling overlapped
tiling optimisation for stencil computations, which are algorithms widely used in machine
learning, medical imaging etc., are formalised in Agda.

We firstly discuss about the primitive slide, which is an operation creating neighbour values. It
operates a sliding window of a given size moving past number of elements with a given step to
traverse till the end of an array. For example, if we apply slide to the array [0, 1, 2, 3, 4] with a
given size 3 and a given step 1, we will get the result:

[[0, 1, 2], [1, 2, 3], [2, 3, 4]]

A formal definition of slide is shown below:

slide : {= : nat} → (BI B? : nat) → {C : data} → (B? · = + BI − B?)•C → =•BI•C (3.11)

where BI is the size of a sliding window and B? is a given step, note that both = and B? are larger
than zero. The split primitive can be viewed as a special case of slide when the size and step
are the same.

Similar to defining split, slide is also inductively defined with take and drop:

-- The definition of primitive slide

slide : {n : ℕ}→ (sz : ℕ)→ (sp : ℕ)→ {T : Set}→ Vec T (sz + n * (suc sp))→
Vec (Vec T sz) (suc n)

slide {zero} sz sp xs = [ xs ]
slide {suc n} sz sp xs =

take sz {(suc n) * (suc sp)} xs ::
slide {n} sz sp (drop (suc sp) (cast (slide-lem n sz sp) xs))

The base case is very intuitive, which means when the size of the array is BI, the result is an array
of the input array. The inductive case is similar to the inductive case of split, however, we
need to cast the size of the array into a suitable pattern to perform the drop operation. The cast
operation does not alter the size or the elements in an array, all it does is merely changing the
numerical pattern of the array size in the type. It is defined as:
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-- Helper cast, casting the size of a given array

cast : {T : Set}→ {m n : ℕ}→ .(_ : m ≡ n)→ Vec T m→ Vec T n
cast {T} {zero} {zero} eq [] = []
cast {T} {suc m} {suc n} eq (x :: xs) = x :: cast {T} {m} {n} (cong pred eq) xs

It states that if it is possible to provide an equality relation between two natural numbers< and =,
where< is the size of a given array, then we can construct an array of size = which is equal to
the original array.

The slide-lem used in the definition of slide is such an equality relation:

slide-lem : (n sz sp : ℕ)→
suc (sz + (sp + n * suc sp)) ≡ suc (sp + (sz + n * suc sp))

The proof of this lemma is omitted for brevity. With this lemma, we are able to cast the size of
an array with pattern BD2 (BI + (B? + = ∗ BD2 B?)) into the pattern BD2 (B? + (BI + = ∗ BD2 B?)), to
satisfy the pattern (drop (BD2 B?)) requires.
Padding is an operation for extending the boundary of an array by adding given numbers of
elements at the beginning and end of an array. There are two types of padding in LIFT, padCst
and padClamp. The difference is that the elements padCst adds to a given array have a constant
value; however in padClamp, the values are generated by a function. We only discuss padCst in
this paper.

The primitive padCst is defined as:

padCst : {= : nat} → (; A : nat) → {C : data} → C → =•C → (; + = + A )•C (3.12)

where ; and A are the numbers of elements to be added at the beginning and end of the given
array. C indicates the constant value of these elements. An example of the padCst operation is
given below, note that we choose ; = 2, A = 3, and the constant value is 0:

?03�BC 2 3 0 [3, 4, 5] = [0, 0, 3, 4, 5, 0, 0, 0]

We define padCst in Agda by breaking the operation down into adding elements at the beginning
and adding elements add the end. Combining these two operations together gives padCst:

-- Adding elements at the begining

padCst; : {n : ℕ}→ (l : ℕ)→ {T : Set}→ T→ Vec T n→ Vec T (l + n)
padCst; zero x xs = xs
padCst; (suc l) x xs = padCst; l x ([ x ] ++ xs)

-- Adding elements at the end

padCstA : {n : ℕ}→ (r : ℕ)→ {T : Set}→ T→ Vec T n→ Vec T (n + r)
padCstA zero x xs = xs
padCstA (suc r) x xs = padCstA r x (xs ++ [ x ])

-- The definition of primitive padCst

padCst : {n : ℕ}→ (l r : ℕ)→ {T : Set}→ T→ Vec T n→ Vec T (l + n + r)
padCst l r x xs = padCstA r x (padCst; l x xs)

Both slide and padCst are one-dimensional operations for neighbour value creation and array
boundary handling, we can extend them to handle operations on multiple dimensions. According
to Hagedorn et al. (2018), the 2D slide operation is defined as:

B;8342 (B8I4, BC4?, 8=?DC) =<0? (CA0=B?>B4, B;834 (B8I4, BC4?, <0? (B;834 (B8I4, BC4?), 8=?DC)))
(3.13)
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We formalise it in Agda as:

-- The definition of 2D slide

slide2 : {n m : ℕ}→ (sz : ℕ)→ (sp : ℕ)→ {T : Set}→
Vec (Vec T (sz + n * (suc sp))) (sz + m * (suc sp))→
Vec (Vec (Vec (Vec T sz) sz) (suc n)) (suc m)

slide2 {n} {m} sz sp xs = map transpose (slide {m} sz sp (map (slide {n} sz sp) xs))

Comparing to the definition in 3.13, this definition indicates: 1) the 2D slide operation adds two
more dimensions to the input multi-dimensional array and 2) the restrictions of the size of each
dimension of input multi-dimensional array and the shape of the result.

Although there no straightforward definition of a 2D padCst operation, we can adapt the
definition from a general form of n-dimensional padding:

?03= (; , A , ℎ, 8=?DC) =<0?=−1 (?03 (; , A , ℎ), ?03=−1 (; , A , ℎ, 8=?DC)) (3.14)

where<0?= is defined as:

<0?= (5 , 8=?DC) =<0?=−1 (<0? (5 ), 8=?DC) (3.15)

Based on this definition, the 2D padCst operation is defined in Agda as:

-- The definition of 2D padCst

padCst2 : {n m : ℕ}→ (l r : ℕ)→ {T : Set}→ T→ Vec (Vec T n) m→
Vec (Vec T (l + n + r)) (l + m + r)

padCst2 {n} l r x xs = map (padCst l r x) (padCst l r (fill n x) xs)

where fill is defined in section 3.2.3, It says the inner dimension is extended with the given
constant value G and outer dimension is extended with arrays of that given constant value.

3.2.5 Simplifying semantics with REWRITE

Since Agda is dependently typed, the type of an array depends not only on the type of the
elements inside the array but also the size of the array. Sometimes this can introduce complexities
in defining semantics of array operations as well as developing proofs. We have to come up with
some strategies to cope with this feature. For instance, in the definition of slide, we have to use
cast to adjust the pattern of an array’s size to satisfy the definition of drop. Moreover, we will
later discuss about a mechanism in proving the equality between two different types in section
4.2.5. In this section, we introduce a way to increase the flexibility of Agda’s type system to
simplify the primitives.

Take the definition of padCst as an example, originally we needed to define it as:

-- The orignal definition of padCst
-- Adding elements at the begining

padCst; : {n : ℕ}→ (l : ℕ)→ {T : Set}→ T→ Vec T n→ Vec T (l + n)
padCst; zero x xs = xs
padCst; (suc l) x xs = cast lem1 (padCst; l x ([ x ] ++ xs))

-- Adding elements at the end

padCstA : {n : ℕ}→ (r : ℕ)→ {T : Set}→ T→ Vec T n→ Vec T (n + r)
padCstA {n} zero x xs rewrite +-comm n zero = xs
padCstA (suc r) x xs = cast lem2 (padCstA r x (xs ++ [ x ]))
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-- The definition of primitive padCst

padCst : {n : ℕ}→ (l r : ℕ)→ {T : Set}→ T→ Vec T n→ Vec T (l + n + r)
padCst l r x xs = padCstA r x (padCst; l x xs)

where lem1 and lem2 are defined as:

lem1 : {l n : ℕ}→ l + suc n ≡ suc (l + n)
lem2 : {l n : ℕ}→ n + 1 + l ≡ n + suc l

Compare to the definition we introduced in section 3.2.4, in this definition, the semantics of
padCst; and padCstA are more complex requiring extra reasoning on the sizes of arrays. The
reason causing this additional complexity is the definition used for natural number addition in
section 3.1.2. In that definition, natural number addition is defined by induction on the first
argument, therefore, in the base case of padCstA :

padCstA {n} zero x xs rewrite +-comm n zero = xs

Although (I4A> + =) can be reduced to =, Agda fails to reduce the pattern (= + I4A>) to =, since
it does not match the type of the base case in the definition. We have to explicitly provide the
information that natural number addition is commutative to satisfy the pattern in the declaration.
The rationale behind the definitions of the inductive cases is the same.

Consider an alternative definition of natural number addition by induction on the second argu-
ment:

-- An alternative definition of natural number addition
_+′_ : ℕ→ ℕ→ ℕ

n +′ zero = n
n +′ suc m = suc (n +′ m)

This is also a valid definition and allows the pattern matching in the definition of padCst. We
would like Agda to allow both definitions in the type system using a built-in REWRITE feature
(Cockx et al. 2019).

+zero : {m : ℕ}→ m + zero ≡ m
+zero {zero} = refl
+zero {suc m} = cong suc +zero

+suc : {m n : ℕ}→ m + (suc n) ≡ suc (m + n)
+suc {m} {n} =

begin
m + (1 + n)
≡〈 sym (+-assoc m 1 n) 〉
m + 1 + n
≡〈 cong (_+ n) (+-comm m 1) 〉

refl
{-# REWRITE +zero +suc #-}

We first prove these two equality relations to be valid, and then add them into Agda type system
using the REWRITE pragma to make the pattern matching of the natural number addition allow
both definitions. Also, we need to ensure the rules added do not break the confluence of the type
system using the flag --confluence-check in the option enabling the built-in REWRITE:

{-# OPTIONS --rewriting --prop --confluence-check #-}

Afterwards we can simplify the definition of padCst into the one introduced in section 3.2.4.



14

4 Equality Reasoning for Rewrite Rules

The core of LIFT’s optimisation approach is a set of rewrite rules, which systematically transform
high-level expressions written using primitives introduced in section 3.2, into semantically
equivalent expressions. The main aim of this project is to develop mechanical proofs to show the
correctness of these rewrite rules.

4.1 Algorithmic rules
Algorithmic rules produce representations of different algorithmic choices of the high-level
expression, regardless the choice of low-level programming models. We verified six categories
of algorithmic rules published in papers (Steuwer 2015; Steuwer et al. 2015) or implemented in
source code (Hagdorn et al. 2020), which are: fusion rules, identity rules, simplification rules, the
split-join rule, the reduction rule and partial reduction rules.

4.1.1 Fusion rules

The two rules discussed in this section are used for fusing consecutive operations. The first one
fuses two consecutive maps. The second one fuses a general reduction operation reduceSeq and a
map. Formally they are defined as:

<0? 5 ◦<0? 6→<0? (5 ◦ 6) (4.1)
A43D24(4@ (⊕) 83⊕ ◦<0? 5 → A43D24(4@ (_(0,1). 0 ⊕ (5 1)) 83⊕ (4.2)

Proving the correctness of them are straightforward. We first use the proof of 4.1 as an illustration
of prove by induction and the reasoning chain in Agda:

-- The complete reasoning chain of
-- proving the first fusion rule by induction

fusion1 : {n : ℕ}→ {S T R : Set}→ (f : T→ R)→ (g : S→ T)→ (xs : Vec S n)→
(map f ◦ map g) xs ≡ map (f ◦ g) xs

fusion1 f g [] =
begin

(map f ◦ map g) []
≡〈〉

map f (map g [])
≡〈〉

map f []
≡〈〉

[]
≡〈〉

map (f ◦ g) []
�
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fusion1 f g (x :: xs) =
begin

(map f ◦ map g) (x :: xs)
≡〈〉

map f (map g (x :: xs))
≡〈〉

map f (g x :: map g xs)
≡〈〉
f (g x) :: map f (map g xs)
≡〈〉

(f ◦ g) x :: map f (map g xs)
≡〈 cong ((f ◦ g) x ::_ ) (fusion1 f g xs) 〉

(f ◦ g) x :: map (f ◦ g) xs
�

The construction of the equality reasoning is based on Curry-Howard Correspondence (section
2.2), we show the semantic equivalence of <0? 5 ◦<0? 6 and <0? (5 ◦ 6) by proving the
propositional equality (denoted as ≡) of their types. The reasoning chain starts with begin and
ends with � (i.e., Q.E.D); steps are separated by ≡〈〉; within each ≡〈〉, reasoning of achieving
the next step can be provided.

The equality is proven by induction on the input array xs. The base case is: when the input array
is empty, the right-hand side of the equation is trivially equal to the left-hand side. The inductive
case states given the equality holds for xs, we are able to prove it holds for (x :: xs) .
Note that the cong function in the inductive case represents congruence, which is relation for a
given function when it is preserved by applying a given function, it is defined in Agda as:

cong : {A B : Set}→ ∀ (f : A→ B) {x y}→ x ≡ y→ f x ≡ f y

Equality satisfies congruence. For a given function f and equality relation x ≡ y, the congruence
is a relation f x ≡ f y.
In this proof, cong ((f ◦ g) x ::_ ) (fusion1 f g xs) means given the equality relation: (fusion1 f g
xs) and the function (f ◦ g) x ::_ ), we can conclude (f ◦ g) x :: map f (map g xs) ≡ (f ◦ g) x :: map
(f ◦ g) xs.
This proof is rather long, however, we can make it concise by removing the steps which are able
to be figured out by Agda automatically. Note that when there is no required justification inside
a ≡〈〉, the next step is trivial to be derived in Agda. This proof can be rewritten as:

-- The concise proof of the first fusion rule

fusion1 : {n : ℕ}→ {S T R : Set}→ (f : T→ R)→ (g : S→ T)→ (xs : Vec S n)→
(map f ◦ map g) xs ≡ map (f ◦ g) xs

fusion1 f g [] = refl
fusion1 f g (x :: xs) = cong ((f ◦ g) x ::_ ) (fusion1 f g xs)

Note that refl is the reflexivity of equality. Proving a term equals to itself can be written as refl.
Similar to the first fusion rule, the second fusion rule can also be intuitively proven by induction:

-- The proof of the second fusion rule
fusion2 : {n : ℕ}→ {S T R : Set}→

(f : S→ T)→ (bf : T→ R→ R)→ (init : R)→ (xs : Vec S n)→
reduceSeq (_ (a : S) (b : R)→ (bf (f a) b)) init xs ≡
(reduceSeq bf init ◦ map f) xs
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fusion2 f bf init [] = refl
fusion2 f bf init (x :: xs) = fusion2 f bf (bf (f x) init) xs

Note that this rule only holds for the general reduction pattern reduceSeq, which does not
require the binary operator being associative or commutative. The initial value is not required to
be an 83 element defined in section 3.2.2 either.

4.1.2 Identity rules

The first two identity rules state that composing any function operating on an array with id
does not change the output of the function. Formally, they are defined as (Steuwer 2015):

5 → 5 ◦<0? 83 | <0? 83 ◦ 5 (4.3)

To prove these two rules, we firstly need to introduce a lemma map-id, which is an equality
relation map id xs ≡ xs:

map-id : {n : ℕ}→ {T : Set}→ (xs : Vec T n )→ map id xs ≡ xs
map-id [] = refl
map-id (x :: xs) = cong (x ::_) (map-id xs)

Using this lemma, we can easily prove the correctness of the first identity rule:

-- The first identity rule

identity1 : {n : ℕ}→ {S T : Set}→ (f : Vec S n→ Vec T n)→ (xs : Vec S n)→
(f ◦ map id) xs ≡ f xs

identity1 f xs = cong f (map-id xs)

Again, we make use of congruence and the proven lemma here. cong f (map-id xs) says that
given a function f and an equality relation map id xs ≡ xs, we are able to derive the equality
relation f (map id) xs ≡ f xs.
Similarly, we can prove the second identity rule:

-- The second identity rule

identity2 : {n : ℕ}→ {S T : Set}→ (f : Vec S n→ Vec T n)→ (xs : Vec S n)→
(map id ◦ f) xs ≡ f xs

identity2 f xs = map-id (f xs)

Originally, this rule has been proven in paper (Steuwer 2015):

Let GB = [G1, ...,G=].
(<0? 83 ◦ 5 ) GB =<0? 83 (5 GB)

{definition of map}
= [83 (5 GB)1, 83 (5 GB)2, ..., 83 (5 GB)=]
{definition of id}
= 5 GB

This proof is not correct. Since 5 is a function applying to an array but not to each element of
the array, in the second step, 5 should not be applied to elements in GB. The proof in Agda is free
from this mistake, as the type of f is defined as (Vec S n→ Vec T n) and the array xs has type
(Vec S n), xs is a valid argument of f. The compiler will complain about the type error if we try
to apply f to each element in xs.
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The third identity rule states if we transpose a 2D array twice, the resulting array is equal to the
input array itself. It can be formally defined as:

CA0=B?>B4 ◦ CA0=B?>B4 → 83 (4.4)

The proof in Agda is more complex than the first two:

-- The third identity rule: (A) )) ≡ A

identity3 : {n m : ℕ}→ {T : Set}→ (xss : Vec (Vec T m) n)→
transpose (transpose xss) ≡ xss

identity3 {suc n} {zero} ([] :: xss) = cong ([] ::_) (fill-empty xss)
identity3 {zero} {m} [] = empty (transpose (fill _ []))
identity3 {suc n} {suc m} ((x :: xs) :: xss) =

begin
(x :: map head (transpose (xs :: map tail xss))) ::
transpose (map head xss :: map tail (transpose (xs :: map tail xss)))
≡〈 cong (_:: transpose (map head xss :: map tail (transpose (xs :: map tail xss))))

(cong (x ::_) (transpose-head xs xss)) 〉
(x :: xs) :: transpose (map head xss :: map tail (transpose (xs :: map tail xss)))
≡〈 cong (_ yss→ (x :: xs) :: transpose yss) (transpose-tail xs xss) 〉

(x :: xs) :: transpose (transpose xss)
≡〈 cong ((x :: xs) ::_) (identity3 xss) 〉

refl

The three cases in the proof match the three cases in the definition of transpose. Each case is
broken down into smaller lemmas, which are equality reasoning about the expressions involving
helper functions used for defining transpose, i.e., fill, head and tail. In the third case, we
conclude this proof by induction.

4.1.3 Simplification rules

Each simplification rule specifies a pair of consecutive operations that can be eliminated. We
discuss about the split-join pair and join-split pair in this section. Formally they are defined as:

9>8= ◦ B?;8C = → 83 (4.5)
B?;8C = ◦ 9>8= → 83 (4.6)

Again, both of them can be proven by induction, some smaller lemmas of equality reasoning on
expressions involving take and drop are necessary since split is defined using them. The proof
of the first rule 4.5 is shown below:

-- The proof of the first simplification rule

simplification1 : (n : ℕ)→ {m : ℕ}→ {T : Set}→ (xs : Vec T (m * n))→
(join ◦ split n {m}) xs ≡ xs

simplification1 n {zero} [] = refl
simplification1 n {suc m} xs =

begin
take n xs ++ join (split n {m} (drop n xs))
≡〈 cong (take n xs ++_) (simplification1 n {m} (drop n xs)) 〉

take n xs ++ drop n xs
≡〈 take-drop n xs 〉

refl
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where take-drop is an lemma says the concatenation of the result of taking = elements from an
array and the result of dropping = elements from that array is the original array itself, we prove it
in Agda:

take-drop : (n : ℕ)→ {m : ℕ}→ {T : Set}→ (xs : Vec T (n + m))→
take n {m} xs ++ drop n {m} xs ≡ xs

take-drop zero xs = refl
take-drop (suc n) (x :: xs) = cong (x ::_) (take-drop n xs)

The proof of the second simplification rule 4.6 has more steps comparing to the first one but is
still straightforward:

-- The proof of the second simplification rule

simplification2 : (n : ℕ)→ {m : ℕ}→ {T : Set}→ (xs : Vec (Vec T n) m)→
(split n ◦ join) xs ≡ xs

simplification2 n {zero} [] = refl
simplification2 n {suc m} (xs :: xs1) =

begin
take n (xs ++ join xs1) :: split n (drop n (xs ++ join xs1))
≡〈 cong (_:: split n (drop n (xs ++ join xs1))) (take-++ n xs (join xs1)) 〉
xs :: split n (drop n (xs ++ join xs1))
≡〈 cong (xs ::_) (cong (split n) (drop-++ n xs (join xs1))) 〉
xs :: split n (join xs1)
≡〈 cong (xs ::_) (simplification2 n xs1) 〉

refl

It requires a pair of lemmas take-++ and drop-++, which are defined as:

take-++ : (n : ℕ)→ {m : ℕ}→ {T : Set}→ (xs : Vec T n)→ (xs1 : Vec T m)→
take n {m} (xs ++ xs1) ≡ xs

take-++ zero [] xs1 = refl
take-++ (suc n) {m} (x :: xs) xs1 = cong (x ::_) (take-++ n {m} xs xs1)

drop-++ : (n : ℕ)→ {m : ℕ}→ {T : Set}→ (xs : Vec T n)→ (xs1 : Vec T m)→
drop n (xs ++ xs1) ≡ xs1

drop-++ zero [] xs1 = refl
drop-++ (suc n) (x :: xs) xs1 = drop-++ n xs xs1

According to the proofs in section 4.1.2 and section 4.1.3 It can be pointed out that breaking proof
down into smaller reusable proofs is an effective strategy for developing verification programs.

4.1.4 Split-join rule

The split-join rule allows a map to be partitioned into several nested maps, possibly handled by
multiple threads. The rule is defined as:

<0? 5 → 9>8= ◦<0? (<0? 5 ) ◦ B?;8C = (4.7)

To prove this rule, we need two lemmas, one is the first simplification rule 4.5 defined in section
4.1.3, the other one is a movement rule splitBeforeMapMapF. We will discuss more about
movement rules is section 4.2.

The rule splitBeforeMapMapF is defined as:
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-- The proof of split movement rule

splitBeforeMapMapF : (n : ℕ)→ {m : ℕ}→ {S T : Set}→
(f : S→ T)→ (xs : Vec S (m * n))→
map (map f) (split n {m} xs) ≡ split n {m} (map f xs)

splitBeforeMapMapF n {zero} f xs = refl
splitBeforeMapMapF n {suc m} f xs =

begin
map f (take n xs) :: map (map f) (split n (drop n xs))
≡〈 cong (map f (take n xs) ::_) (splitBeforeMapMapF n f (drop n xs)) 〉

map f (take n xs) :: split n (map f (drop n xs))
≡〈 cong (_:: split n (map f (drop n xs))) (map-take n f xs) 〉

take n (map f xs) :: split n (map f (drop n xs))
≡〈 cong (take n (map f xs) ::_) (cong (split n) (map-drop n f xs)) 〉

take n (map f xs) :: split n (drop n (map f xs))
�

It basically says that applying nested map operations after an array being split is the same as
applying a single map operation to that array and then split it. The proof uses smaller lemmas as
the equality reasoning of moving map operations around take and drop, since split is defined
based on them. More details of proving movements rules and their lemmas will be discussed in
section 4.2 later.

Now we can make use of these two rules to prove split-join rule, which is shown below:

-- The proof of split-join rule
splitJoin : {m : ℕ}→ {S T : Set}→

(n : ℕ)→ (f : S→ T)→ (xs : Vec S (m * n))→
(join ◦ map (map f) ◦ split n {m}) xs ≡ map f xs

splitJoin {m} n f xs =
begin

join (map (map f) (split n {m} xs))
≡〈 cong join (splitBeforeMapMapF n {m} f xs) 〉

join (split n {m} (map f xs))
≡〈 simplification1 n {m} (map f xs) 〉

map f xs
�

Since the equality relation is symmetric, it satisfies the original definition 4.7 by switching the
expressions on the left-hand side and right-hand side. Comparing to the paper proof provided
by Steuwer (2015), this proof is more structured, since it clearly states how it is constructed by
the rules we have proven to be correct.

4.1.5 Reduction rule

The reduction rule states that a full reduction operation can be expressed and an composition
of full reduction and partial reduction, allowing the full reduction operation to be partitioned,
which is defined as:

A43D24 (⊕) 83⊕ → A43D24 (⊕) 83⊕ ◦ ?0AC'43 (⊕) 83⊕ (4.8)

The proof is developed according to the four cases in the definition of primitive partRed:
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-- The proof of redction rule

reduction : {m : ℕ}→ {T : Set}→ (n : ℕ)→
(M : CommAssocMonoid T)→ (xs : Vec T (suc m * n))→
(reduce M ◦ partRed n {m} M) xs ≡ reduce M xs

--- Base cases

reduction {zero} zero M [] = let _⊕_ = _⊕_ M; Y = Y M in (idA M Y)
reduction {zero} (suc n) M xs = let _⊕_ = _⊕_ M; Y = Y M in (idA M (reduce M xs))
reduction {suc m} zero M [] = let _⊕_ = _⊕_ M; Y = Y M in

begin
reduceSeq _⊕_ (Y ⊕ Y) (partRed zero {m} M [])
≡〈 cong (_ y→ reduceSeq _⊕_ y (partRed zero {m} M [])) (idA M Y) 〉

reduce M (partRed zero {m} M [])
≡〈 reduction {m} zero M [] 〉

refl
-- Inductive case

reduction {suc m} (suc n) M xs = let _⊕_ = _⊕_ M; Y = Y M in
begin

reduce M ([ reduce M (take (suc n) {suc (n + (m * suc n))} xs) ] ++
partRed (suc n) {m} M (drop (suc n) xs))
≡〈 sym (reduce-++ M [ reduce M (take (suc n) {suc (n + (m * suc n))} xs) ]

(partRed (suc n) {m} M (drop (suc n) xs))) 〉
reduce M [ reduce M (take (suc n) {suc (n + (m * suc n))} xs) ] ⊕
reduce M (partRed (suc n) {m} M (drop (suc n) xs))
≡〈 cong2 (_ x y→ x ⊕ y) (idA M (reduce M (take (suc n) {suc (n + (m * suc n))} xs)))

(reduction {m} (suc n) M (drop (suc n) xs)) 〉
reduce M (take (suc n) {suc (n + (m * suc n))} xs) ⊕
reduce M (drop (suc n) {suc (n + (m * suc n))} xs)
≡〈 sym (reduce-take-drop (suc n) {suc (n + (m * suc n))} M xs) 〉

refl

Note that the congruence function cong2 used in the inductive case is similar to the function
cong introduced in section 4.1.1, but allowing us to reasoning about the congruence with two
function applications instead of one.

The first and second case can be easily proven by the property of the 83 element. The third case
is proven using a lemma:

reduceSeq-reduce : {n : ℕ}→ {T : Set}→
(M : CommAssocMonoid T)→ (x : T)→ (xs : Vec T n)→
let _⊕_ = _⊕_ M in
x ⊕ reduce M xs ≡ reduceSeq _⊕_ x xs

which means performing the operation ⊕ with an argument G with the type ) and the result of
the full reduction of an array GB whose elements have the type ) , is equal to a general reduce
operation with operator ⊕, initial value G and the input array GB.

The last case is proven using two lemmas which are stated below:

reduce-++ : {n m : ℕ}→ {T : Set}→
(M : CommAssocMonoid T)→ (xs1 : Vec T n)→ (xs2 : Vec T m)→
let _⊕_ = _⊕_ M in
reduce M xs1 ⊕ reduce M xs2 ≡ reduce M (xs1 ++ xs2)
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reduce-take-drop : (n : ℕ)→ {m : ℕ}→ {T : Set}→
(M : CommAssocMonoid T)→ (xs : Vec T (n + m))→
let _⊕_ = _⊕_ M in
reduce M xs ≡
reduce M (take n {m} xs) ⊕ reduce M (drop n {m} xs)

Basically, the lemma reduce-++ states performing the operation ⊕ on the results of reduction
of two arrays GB1 and GB2 is equal to the reduction of the concatenation of these two arrays.
And reduce-take-drop shows the reduction of an array is equal to the reduction of the array
containing = elements taken from it and the reduction of it after dropping the first = elements
being combined together by the operator ⊕.
The proofs of lemmas are omitted for brevity, but can be found in the project’s source code.

4.1.6 Partial reduction rules

There are two partial reduction rules we would like to verify in this section. The first one states
the condition when a partial reduction operation can result in a full reduction, which is formally
defined as:

?0AC'43 (⊕) 83⊕ = → A43D24 (⊕) 83⊕ (4.9)

According to the definition of partRed shown in section 3.2.2, this rule trivially holds:

-- The proof of the first partial reduction rule

partialReduction1 : {T : Set}→ (n : ℕ)→
(M : CommAssocMonoid T)→ (xs : Vec T n)→
partRed n M xs ≡ [ reduce M xs ]

partialReduction1 zero M [] = refl
partialReduction1 (suc n) M xs = refl

The second rule is more complicated, it states the partial reduction can be done in parallel by
partitioning the input array first. The definition is shown below:

?0AC'43 (⊕) 83⊕ = → 9>8= ◦<0? (?0AC'43 (⊕) 83⊕ =) ◦ B?;8C < (4.10)

The idea of proving this rule is similar to the construction of the proof for the split-join rule in
section 4.1.4, we need to move the map operation to a suitable place and then cancel the split and
join operation pair using a simplification rule. The lemma we need is:

map-join-partRed : {m : ℕ}→ {T : Set}→ (n : ℕ)→
(M : CommAssocMonoid T)→ (xss : Vec (Vec T n) (suc m))→
join (map (partRed n {zero} M) xss) ≡
partRed n {m} M (join {n} {suc m} xss)

It simply says joining a 2D array together after mapping partial reduction operations onto it
equals to applying the partial reduction operation after joining this 2D array. Then we can prove
this rule by applying this lemma and the first simplification rule 4.5:

-- The proof of the second partial reduction rule

partialReduction2 : {m : ℕ}→ {t : Set}→ (n : ℕ)→
(M : CommAssocMonoid t)→ (xs : Vec t (suc m * n))→
(join ◦ map (partRed n {zero} M) ◦ split n {suc m}) xs ≡
partRed n {m} M xs
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partialReduction2 {m} n M xs =
begin

join (map (partRed n {zero} M) (split n {suc m} xs))
≡〈 map-join-partRed {m} n M (split n {suc m} xs) 〉

partRed n M (join (split n {suc m} xs))
≡〈 cong (partRed n M) (simplification1 n {suc m} xs) 〉

refl

Again, since the equality relation is symmetric, we can conclude the second partial reduction
rule 4.10 to be correct.

4.1.7 Summary

In this section, we firstly introduce proof by induction in Agda, and then encode a set of
algorithmic rules defined by Steuwer (2015) and verify their correctness. Mechanical proofs are
effective for verifying these parallel optimisation strategies for array operations. Comparing to
paper proofs, each step of reason processes is well constructed and the reinforcement of type
restrictions ensures the correctness of those proofs.

4.2 Movement rules
A movement rule moves the primitives’ orders in a composed expression, to make its pattern
matches the shape which we can apply algorithmic rules on. They have been implemented in
source code but not yet verified (Hagdorn et al. 2020). The rule splitBeforeMapMapF intro-
duced in section 4.1.4 is one of the movement rules, technically there is a pair of them, defined
symmetrical to each other as:

<0? (<0? 5 ) ◦ B?;8C = → B?;8C = ◦<0? 5 (4.11)
B?;8C = ◦<0? 5 →<0? (<0? 5 ) ◦ B?;8C = (4.12)

splitBeforeMapMapF is the rule 4.11, it changes the order of split and map operations, in order
to group split and join together allowing them to cancel each other. In the following sections,
we are going to discuss more movement rules. The rule 4.12 can be proven correct since equality
is symmetric.

4.2.1 Moving map around other primitives

There are a set of rules similar to splitBeforeMapMapF, which move map operations before or
after other primitive operations while preserving the final results. We simply address each rule
by the primitive combined with map in its expression, such as addressing splitBeforeMapMapF
as the split movement rule.

As we discussed in section 3.2.4, split can be viewed as a special case of the primitive slide
when the B8I4 is equal to BC4?, therefore we can form a pair of slide movement rules similar to
the pair of split movement rules:

<0? (<0? 5 ) ◦ B;834 BI B? → B;834 BI B? ◦<0? 5 (4.13)
B;834 BI B? ◦<0? 5 →<0? (<0? 5 ) ◦ B;834 BI B? (4.14)

They state applying nested map operations after slide equals to applying a single map before
slide. Again, since they are symmetric to each other, proving the correctness of one of them
shows they both hold. We prove the first slide movement rule 4.13 in Agda:
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-- The proof of the first slide movement rule

slideBeforeMapMapF : {n : ℕ}→ (sz sp : ℕ)→ {S T : Set}→
(f : S→ T)→ (xs : Vec S (sz + n * (suc sp)))→
map (map f) (slide {n} sz sp xs) ≡ slide {n} sz sp (map f xs)

slideBeforeMapMapF {zero} sz sp f xs = refl
slideBeforeMapMapF {suc n} sz sp f xs = let ys = (cast (slide-lem n sz sp) xs) in

begin
map f (take sz xs) :: map (map f) (slide {n} sz sp (drop (suc sp) ys))
≡〈 cong (_:: map (map f) (slide {n} sz sp (drop (suc sp) ys))) (map-take sz f xs) 〉

take sz (map f xs) :: map (map f) (slide sz sp (drop (suc sp) ys))
≡〈 cong (take sz (map f xs) ::_) (slideBeforeMapMapF {n} sz sp f (drop (suc sp) ys))〉

take sz (map f xs) :: slide sz sp (map f (drop (suc sp) ys))
≡〈 cong (_ y→ take sz (map f xs) :: slide sz sp y) (map-drop (suc sp) f ys) 〉

cong (_ y→ take sz (map f xs) :: slide sz sp (drop (suc sp) y))
(map-cast {sz + suc (sp + n * suc sp)} {suc (sp + (sz + n * suc sp))} f xs
(slide-lem n sz sp))

The general idea is still proof by induction. The proof of the base case is trivial, as for the inductive
case, we break it down into three smaller lemmas, map-take, map-drop and map-cast.

map-take : (n : ℕ)→ {m : ℕ}→ {S T : Set}→ (f : S→ T)→ (xs : Vec S (n + m))→
map f (take n {m} xs) ≡ (take n {m} (map f xs))

map-take zero f xs = refl
map-take (suc n) {m} f (x :: xs) = cong (f x ::_) (map-take n {m} f xs)

map-drop : (n : ℕ)→ {m : ℕ}→ {S T : Set}→ (f : S→ T)→ (xs : Vec S (n + m))→
map f (drop n {m} xs) ≡ (drop n {m} (map f xs))

map-drop zero f xs = refl
map-drop (suc n) f (x :: xs) = map-drop n f xs

map-cast : {m n : ℕ}→ {S T : Set}→ (f : S→ T)→ (xs : Vec S m)→ .(eq : m ≡ n)→
map f (cast eq xs) ≡ cast eq (map f xs)

map-cast {zero} {zero} f [] eq = refl
map-cast {suc m} {suc n} f (x :: xs) eq =

cong (f x ::_) (map-cast {m} {n} f xs (cong pred eq))

Basically, map-take says mapping a function onto an array after taking = elements from it equals
taking = elements from the resulting array of mapping the function onto the input array. Similarly,
map-drop and map-cast are the equality reasoning of changing orders of map operations with
drop and cast in composed expressions.

With these three lemmas, we first change the order of take and map, allowing the us to apply
slideBeforeMapMapF inductively on the expression; then we change the order of drop and map,
allowing us to further change the order of cast and map, making the expression matches the
pattern on the right-hand side of the definition.

Since we defined movement rules for split, we can also form movement rules for its opposite
operation join: joining a 2D array before applying a single map equals to applying nested maps
on that 2D array before the join operation. Formally, the pair of join movement rules is defined
as below:

<0? 5 ◦ 9>8= → 9>8= ◦<0? (<0? 5 ) (4.15)
9>8= ◦<0? (<0? 5 ) →<0? 5 ◦ 9>8= (4.16)
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To prove these rules, it is necessary to prove a lemma which indicates concatenating two arrays
together and then mapping a function onto the resulting array is equal to mapping the function
onto the two arrays separately before concatenating them together:

map-++ : {n m : ℕ}→ {S T : Set}→
(f : S→ T)→ (xs1 : Vec S n)→ (xs2 : Vec S m)→
map f (xs1 ++ xs2) ≡ map f xs1 ++ map f xs2

map-++ f [] xs2 = refl
map-++ f (x :: xs1) xs2 = cong (f x ::_) (map-++ f xs1 xs2)

Now the rule 4.15 in can be proven by using the lemma map-++:

-- The proof of the first join movement rule
joinBeforeMapF : {S T : Set}→ {m n : ℕ}→

(f : S→ T)→ (xs : Vec (Vec S n) m)→
map f (join xs) ≡ join (map (map f) xs)

joinBeforeMapF f [] = refl
joinBeforeMapF f (xs :: xs1) =

begin
map f (xs ++ join (xs1))
≡〈 map-++ f xs (join xs1) 〉

map f xs ++ map f (join xs1)
≡〈 cong (map f xs ++_) (joinBeforeMapF f xs1) 〉

refl

The map operation is moved before the array concatenation, allowing joinBeforeMapF to be
applied in the inductive case.

The last pair of rules to be discussed about in this section is a pair of transpose movement rules,
stating that applying nested maps before transposing a 2D array is equal to transposing the 2D
array before applying the nested map operations. The formal definitions are shown below:

CA0=B?>B4 ◦<0? (<0? 5 ) →<0? (<0? 5 ) ◦ CA0=B?>B4 (4.17)
<0? (<0? 5 ) ◦ CA0=B?>B4 → CA0=B?>B4 ◦<0? (<0? 5 ) (4.18)

The proof of the rule 4.17 has three cases matching the definition of transpose (section 3.2.3):

-- The proof of the first transpose movement rule
mapMapFBeforeTranspose : {n m : ℕ}→ {S T : Set}→

(f : S→ T)→ (xss : Vec (Vec S m) n)→
map (map f) (transpose xss) ≡ transpose (map (map f) xss)

mapMapFBeforeTranspose {zero} {m} f [] = fill-[]1 m f
mapMapFBeforeTranspose {suc n} {zero} f xss = refl
mapMapFBeforeTranspose {suc n} {suc m} f ((x :: xs) :: xss) =

begin
(f x :: map f (map head xss)) :: map (map f) (transpose (xs :: map tail xss))
≡〈 cong ((f x :: map f (map head xss)) ::_)

(mapMapFBeforeTranspose f (xs :: map tail xss)) 〉
(f x :: map f (map head xss)) ::
transpose (map f xs :: map (map f) (map tail xss))
≡〈 cong (_:: transpose (map f xs :: map (map f) (map tail xss)))

(cong (f x ::_) (map-head f xss)) 〉
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(f x :: map head (map (map f) xss)) ::
transpose (map f xs :: map (map f) (map tail xss))
≡〈 cong (_ yss→ (f x :: map head (map (map f) xss)) ::

transpose (map f xs :: yss)) (map-tail f xss) 〉
refl

The first base case is proven with lemma fill-[]1:

fill-[]1 : {S T : Set}→ (m : ℕ)→ (f : S→ T)→
map (map f) (fill m []) ≡ fill m []

fill-[]1 zero f = refl
fill-[]1 (suc m) f = cong ([] ::_) (fill-[]1 m f)

which says given a 2D array constructed by filling an array with< copies of empty arrays, if we
apply nested map operations on that 2D array, the value of that 2D array remains unchanged.

The second base case is trivial. The inductive case is proven by two other lemmas defined as:

map-head : {n m : ℕ}→ {S T : Set}→
(f : S→ T)→ (xss : Vec (Vec S (suc m)) n)→
map f (map head xss) ≡ map head (map (map f) xss)

map-head f [] = refl
map-head f ((x :: xs) :: xss) = cong (f x ::_) (map-head f xss)

map-tail : {n m : ℕ}→ {S T : Set}→
(f : S→ T)→ (xss : Vec (Vec S (suc m)) n)→
map (map f) (map tail xss) ≡ map tail (map (map f) xss)

map-tail f [] = refl
map-tail f ((x :: xs) :: xss) = cong (map f xs ::_) (map-tail f xss)

They are both simply proven by induction. The map-head lemma says applying a map operation
after mapping the head operation on a 2D array has the same result as mapping the head operation
after applying nested maps on the 2D array; and map-tail shows the equality between applying
nested maps before and after mapping a tail operation onto a 2D array.

The process of proving the inductive case is applying the rule itself inductively, and then applying
map-head and map-tail to complete the proof.

4.2.2 Join-transpose rules

There are four join-transpose rules, each of them changes join and transpose operations’ orders
in a composed expression. Formally they are defined as:

CA0=B?>B4 ◦ 9>8= →<0? 9>8= ◦ CA0=B?>B4 ◦<0? CA0=B?>B4 (4.19)
<0? 9>8= ◦ CA0=B?>B4 → CA0=B?>B4 ◦ 9>8= ◦<0? CA0=B?>B4 (4.20)
9>8= ◦<0? CA0=B?>B4 → CA0=B?>B4 ◦<0? 9>8= ◦ CA0=B?>B4 (4.21)
CA0=B?>B4 ◦<0? 9>8= → 9>8= ◦<0? CA0=B?>B4 ◦ CA0=B?>B4 (4.22)

These four rules are not symmetric to each other, nevertheless, their patterns are internally related
to each other:

• The left-hand side of the rule 4.19 is the same as the first two patterns of the right-hand
side of the rule 4.20 while the left-hand side of the rule 4.20 has the same pattern as the
first two components of the right-hand side of the rule 4.19;
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• the left-hand side of the rule 4.20 matches the second and third components of the right-
hand side of the rule 4.21 while the left-hand side of the rule 4.21 is the same as the second
and third components of the right-hand-side of the rule 4.20;

• the left-hand side of the rule 4.21 matches the first two components of the rule 4.22 and
again the left-hand side of the rule 4.22 is the same as the first two patterns of the right-hand
side of the rule 4.21.

Therefore, the strategy of proving these rules is, starting from proving the first rule 4.19, other
rules can be sequentially proven based on a previous rule afterwards.

To prove the first join-transpose rule 4.19, several lemmas need to be introduced first, note that
proofs are omitted for brevity, but available in the provided source code:

fill-[]2 : (n : ℕ)→ {m : ℕ}→ {T : Set}→ (xs : Vec T zero)→
fill n xs ≡ map (join {m}) (fill n [])

map-join-[] : {n1 n2 m : ℕ}→ {T : Set}→
(xsss : Vec (Vec (Vec T zero) n1) m)→
(ysss : Vec (Vec (Vec T zero) n2) m)→
map join xsss ≡ map join ysss

map-map-head : {n m o : ℕ}→ {T : Set}→
(xsss : Vec (Vec (Vec T (suc o)) (suc m)) (suc n))→
map (map head) xsss ≡ map head (map transpose xsss)

map-map-tail : {n m o : ℕ}→ {T : Set}→
(xsss : Vec (Vec (Vec T (suc o)) (suc m)) (suc n))→

map transpose (map (map tail) xsss) ≡ map tail (map transpose xsss)

The lemma fill-[]2 is similar to the lemma fill-[]1 introduced in section 4.2.1, stating that mapping
a join operation onto a 2D array constructed by filling an array with = empty arrays does not
change the 2D array’s value. The lemma map-join-[] is straightforward, it means given two
3D arrays, both of them have innermost dimensions with size zero and outermost dimensions
with size<, although the second dimensions have different sizes, mapping a join operation onto
them gets the same result. map-map-head and map-map-tail are lemmas for reducing nested
mapping head or tail operations into a single map with mapping transpose operations.

The proof the first join-transpose rule is constructed by induction on the size of each dimension
of the input 3D array:

-- The proof of the first join-transpose rule

joinBeforeTranspose : {n m o : ℕ}→ {t : Set}→ (xsss : Vec (Vec (Vec t o) m) n)→
transpose (join xsss) ≡ map join (transpose (map transpose xsss))

-- Base cases
joinBeforeTranspose {zero} {m} {o} [] = fill-[]2 o {m} []
joinBeforeTranspose {suc n} {zero} {o} ([] :: xsss) =

begin
transpose (join xsss)
≡〈 joinBeforeTranspose xsss 〉

map join (transpose (map transpose xsss))
≡〈 map-join-[] (transpose (map transpose xsss))

(transpose (map transpose ([] :: xsss))) 〉
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refl
joinBeforeTranspose {suc n} {suc m} {zero} (xss :: xsss) = refl
-- Inductive case
joinBeforeTranspose {suc n} {suc m} {suc o} xsss =

begin
map head (join xsss) :: transpose (map tail (join xsss))
≡〈 cong2 (_ x y→ x :: transpose y)

(joinBeforeMapF head xsss) (joinBeforeMapF tail xsss) 〉
join (map (map head) xsss) :: transpose (join (map (map tail) xsss))
≡〈 cong (join (map (map head) xsss) ::_)

(joinBeforeTranspose (map (map tail) xsss)) 〉
join (map (map head) xsss) ::
map join (transpose (map transpose (map (map tail) xsss)))
≡〈 cong2 (_ x y→ join x :: map join (transpose y))

(map-map-head xsss) (map-map-tail xsss) 〉
refl

The first base case can be proven using the lemma fill-[]2, the second base case can be proven
with induction on itself followed by the lemma map-join-[], and the third base case is trivial.
There are three steps in the proof of the inductive case, firstly, applying the first join movement
rule joinBeforeMapF (definition 4.15) which is proven in section 4.2.1 twice to the 3D array
GBBB, where 5 in the join movement rule is substituted by head and tail respectively. The
second step is to apply joinBeforeTranspose by induction. Lastly, lemmas map-map-head and
map-map-tail are applied to complete the proof.

Base on the proven rule joinBeforeTranspose, we are able to prove the second join-transpose
rule 4.20. According to the pattern introduced at the beginning of this section, the left-hand side
of joinBeforeTranspose matches the first two components of the right-hand side of the rule
4.20; and the left-hand side of the rule 4.20 matches the first two components of left-hand side of
joinBeforeTranspose, it is easier for us to prove the symmetric definition of this rule and since
equality is a symmetric relation, this rule can hence be proven correct.

The proof of the symmetric definition is constructed as:

-- The symmetric lemma for the second join-transpose rule

sym-lem1 : {n m o : ℕ}→ {T : Set}→ (xsss : Vec (Vec (Vec T o) m) n)→
transpose (join (map transpose xsss)) ≡ map join (transpose xsss)

sym-lem1 xsss =
begin

transpose (join (map transpose xsss))
≡〈 joinBeforeTranspose (map transpose xsss) 〉

map join (transpose (map transpose (map transpose xsss)))
≡〈 cong (_ y→ map join (transpose y)) (double-map-transpose xsss) 〉

refl

It is simply proven by two steps, firstly applying the joinBeforeTranspose rule to justify the left-
hand side of the equation into an expression matches the first two components of the right-hand
side of the equation, and then cancelling the consecutive mappings of transpose operations by
applying the lemma double-map-transpose:

double-map-transpose : {n m o : ℕ}→ {T : Set}→ (xsss : Vec (Vec (Vec T o) m) n)→
map transpose (map transpose xsss) ≡ xsss

It is similar to the third identity rule 4.4, the difference is that instead of cancelling consecutive
transpose operations, it cancels consecutive mappings of transpose.
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Then we can prove the rule 4.20 by stating the equality relation proven in sym-lem1 is symmetric:

-- The symmetric lemma for the second join-transpose rule
transposeBeforeMapJoin : {n m o : ℕ}→ {T : Set}→

(xsss : Vec (Vec (Vec T o) m) n)→
map join (transpose xsss) ≡ transpose (join (map transpose xsss))

transposeBeforeMapJoin xsss = sym (sym-lem1 xsss)

Note that sym is the function saying an propositional equality relation is symmetric in Agda.

The third 4.21 and fourth 4.22 rules can be proven using the same strategy: developing a proof
of the symmetric definition base on a previous proven rule, and then justifying the correctness of
the rule by the symmetric property of the equality relation.

4.2.3 Split-transpose rules

Three split-transpose rules introduced in this section are the rules moving split and transpose
operations in expression, formally they are defined as:

B?;8C = ◦ CA0=B?>B4 →<0? CA0=B?>B4 ◦ CA0=B?>B4 ◦<0? (B?;8C =) (4.23)
CA0=B?>B4 ◦<0? (B?;8C =) →<0? CA0=B?>B4 ◦ B?;8C = ◦ CA0=B?>B4 (4.24)
<0? (B?;8C =) ◦ CA0=B?>B4 → CA0=B?>B4 ◦<0? CA0=B?>B4 ◦ B?;8C = (4.25)

Similar to the join-transpose rules, the is some regularity in their patterns:

• The left-hand side of the rule 4.23 matches the second and third components of the rule
4.24, and vice versa;

• the two components on the left-hand side of the rule 4.24 have reversed orders of them
on the left-hand side of the rule 4.25, and on the right-hand side, CA0=B?>B4 is the first
function to be applied in 4.24 but the last function to be applied in the rule 4.25.

It indicates that the strategy to prove these three rules is to prove the rule 4.23 first, and then to
develop the proof of the second rule 4.24 base on the first rule, lastly to prove the third rule 4.25
using the second rule.

The proof of the first split-transpose rule 4.23 is shown below:

-- The proof of the first split-transpose rule

transposeBeforeSplit : {m p q : ℕ}→ {T : Set}→ (n : ℕ)→
(xsss : Vec (Vec (Vec T p) (m * n)) q)→

split n {m} (transpose xsss) ≡ map transpose (transpose (map (split n {m}) xsss))
transposeBeforeSplit {zero} n [] = refl
transposeBeforeSplit {zero} n (xss :: xsss) = refl
transposeBeforeSplit {suc m} n xsss =

begin
take n (transpose xsss) :: split n (drop n (transpose xsss))
≡〈 cong2 (_ x y→ x :: split n y) (take-transpose n xsss) (drop-transpose n xsss) 〉

transpose (map (take n) xsss) :: split n (transpose (map (drop n) xsss))
≡〈 cong (transpose (map (take n) xsss) ::_)

(transposeBeforeSplit n (map (drop n) xsss)) 〉
transpose (map (take n) xsss) ::
map transpose (transpose (map (split n) (map (drop n) xsss)))
≡〈 sym (decompose-lem1 n xsss) 〉

refl
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The two base cases are trivial, we focus on discussing about the proof of the inductive case. Proving
the inductive case requires three steps, the first step is applying two lemmas take-transpose
and drop-transpose to change the orders of take, drop and transpose in the expression,
allowing us to inductively apply transposeBeforeSplit in the second step, the two lemmas are
straightforward:

take-transpose : (n : ℕ)→ {m p : ℕ}→
{T : Set}→ (xs : Vec (Vec T (n + m)) p)→
take n {m} (transpose xs) ≡ transpose (map (take n {m}) xs)

drop-transpose : (n : ℕ)→ {m p : ℕ}→
{T : Set}→ (xs : Vec (Vec T (n + m)) p)→
drop n {m} (transpose xs) ≡ transpose (map (drop n {m}) xs)

Basically take-transpose says taking = elements from the result of transposing a 2D array equals
to mapping the take operation before transposing the 2D array; drop-transpose follows the
logic but replaces take with drop.

After the first two step, the left-hand side of the equation is written into:

transpose (map (take n) xsss) ::
map transpose (transpose (map (split n) (map (drop n) xsss)))

Wewould like to prove the right-hand side of the equation can be decompose into this expression,
by introducing the lemma decompose-lem1:

decompose-lem1 : {m p q : ℕ}→ {T : Set}→ (n : ℕ)→
(xsss : Vec (Vec (Vec T p) (suc m * n)) q)→

map transpose (transpose (map (split n {suc m}) xsss)) ≡
transpose (map (take n {m * n}) xsss) ::
map transpose (transpose (map (split n) (map (drop n) xsss)))

It states the right-hand side of the equation is equal to the above expression. We plug the lemma
with its symmetric property into the third step of the proof to complete the reasoning chain.

The idea of proving the second split-transpose rule is the same as proving the second join-
transpose rule 4.24 introduced in section 4.2.2, which is proving the symmetric definition using
a previously proven rule and then justifying the rule by the symmetric property of equality
relations. The symmetric definition is proven as:

-- The symmetric lemma for the second split-transpose rule

sym-lem4 : {m p q : ℕ}→ {T : Set}→ (n : ℕ)→
(xsss : Vec (Vec (Vec T p) (m * n)) q)→

map transpose (split n (transpose xsss)) ≡ transpose (map (split n {m}) xsss)
sym-lem4 n xsss =

begin
map transpose (split n (transpose xsss))
≡〈 cong (map transpose) (transposeBeforeSplit n xsss) 〉

map transpose (map transpose (transpose (map (split n) xsss)))
≡〈 double-map-transpose (transpose (map (split n) xsss)) 〉

refl

The proof is clearly constructed with two steps: applying the first split-transpose rule and applying
the lemma double-map-transpose defined in section 4.2.2. Then the second split-transpose
rule can be justified by stating the equality proven in sym-lem4 is symmetric:
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-- The proof of the second split-transpose rule

mapSplitBeforeTranspose : {m p q : ℕ}→ {T : Set}→ (n : ℕ)→
(xsss : Vec (Vec (Vec T p) (m * n)) q)→

transpose (map (split n {m}) xsss) ≡ map transpose (split n (transpose xsss))
mapSplitBeforeTranspose n xsss = sym (sym-lem4 n xsss)

Proving the third split-transpose rule 4.25 is more tricky, although we would like to make use of
the second split-transpose rule to prove it, its components do not exactly match the patterns in
the second split-transpose rule. Thus, we make use of the third identity rule 4.4 introduced in
section 4.1.2 to create and cancel consecutive transpose operations for pattern matching:

-- The proof of the third split-transpose rule

transposeBeforeMapSplit : {m p q : ℕ}→ {T : Set}→ (n : ℕ)→
(xsss : Vec (Vec (Vec T p) q) (m * n))→

map (split n {m}) (transpose xsss) ≡ transpose (map transpose (split n xsss))
transposeBeforeMapSplit n xsss =

begin
map (split n) (transpose xsss)
≡〈 sym (identity3 (map (split n) (transpose xsss))) 〉

transpose (transpose (map (split n) (transpose xsss)))
≡〈 cong transpose (mapSplitBeforeTranspose n (transpose xsss)) 〉

transpose (map transpose (split n (transpose (transpose xsss))))
≡〈 cong (_ y→ transpose (map transpose (split n y))) (identity3 xsss) 〉

refl

The first step of the proof, we apply the third identity rule symmetrically to introduce a pair of
transpose operations, in order to write the expression into the pattern which allows the second
split-transpose rule mapSplitBeforeTranspose to be applied in the second step. Finally the third
identity rule is applied again to cancel the innermost pair of transpose operations, completing
the proof.

4.2.4 Slide-transpose rules

Since split can be viewed as a special case of slide, we can generalise the split-transpose rules
into slide-transpose rules:

B;834 = ◦ CA0=B?>B4 →<0? CA0=B?>B4 ◦ CA0=B?>B4 ◦<0? (B;834 =) (4.26)
CA0=B?>B4 ◦<0? (B;834 =) →<0? CA0=B?>B4 ◦ B;834 = ◦ CA0=B?>B4 (4.27)
<0? (B;834 =) ◦ CA0=B?>B4 → CA0=B?>B4 ◦<0? CA0=B?>B4 ◦ B;834 = (4.28)

The strategy of proving these three rules is exactly the same as the strategy used for proving three
split-transpose rules discussed in section 4.2.3: proving the rule 4.26 first, and then constructing
the proof of the second rule 4.27 using it, finally proving the third rule 4.28 using the second
rule 4.27.

The steps of proving the first slide-transpose rule 4.26 is similar to proving the first split-transpose
rule, however some new lemmas are required:

-- The proof of the first slide-transpose rule

transposeBeforeSlide : {n m o : ℕ}→ {T : Set}→ (sz sp : ℕ)→
(xsss : Vec (Vec (Vec T o) (sz + n * (suc sp))) m)→

slide {n} sz sp (transpose xsss) ≡
map transpose (transpose (map (slide {n} sz sp) xsss))
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-- Base case 1
transposeBeforeSlide {zero} sz sp [] = refl
-- Base case 2

transposeBeforeSlide {zero} sz sp (xss :: xsss) =
cong (_ y→ transpose (xss :: y) :: []) (sym (map-head-id xsss))

-- Indctive case
transposeBeforeSlide {suc n} sz sp xsss =

let ys = map (cast (slide-lem n sz sp)) xsss in
begin

take sz (transpose xsss) :: slide sz sp (drop (suc sp) (cast _ (transpose xsss)))
≡〈 cong (_ y→ take sz (transpose xsss) :: slide sz sp (drop (suc sp) y))

(transpose-cast (slide-lem n sz sp) xsss) 〉
take sz (transpose xsss) :: slide sz sp (drop (suc sp) (transpose ys))
≡〈 cong2 (_ x y→ x :: slide sz sp y)

(take-transpose sz xsss) (drop-transpose (suc sp) ys) 〉
transpose (map (take sz) xsss) :: slide sz sp (transpose (map (drop (suc sp)) ys))
≡〈 cong (transpose (map (take sz) xsss) ::_)

(transposeBeforeSlide sz sp (map (drop (suc sp)) ys)) 〉
transpose (map (take sz) xsss) ::
map transpose (transpose (map (slide sz sp) (map (drop (suc sp)) ys)))
≡〈 sym (decompose-lem2 sz sp xsss) 〉

refl

The second base case requires a lemma map-head-id, which is defined as:

map-head-id : {n m : ℕ}→ {T : Set}→ (xss : Vec (Vec T m) n)→
map head (map (_ xs→ xs :: []) xss) ≡ xss

where GB has type (Vec Tm). It basically says constructing each inner element with an empty array
and then taking the head of each inner element does not change the resulting value. Obviously,
the result of (head xs :: []) is GB.
The process of proving the inductive case is similar to proving the inductive case of the first
split-transpose rule, but need to firstly apply the lemma transpose-cast to change the order
of cast and transpose in the expression for adjusting the size of the input 3D array to satisfy
following pattern matching. The transpose-cast is defined as:

transpose-cast : {m m1 n : ℕ}→ {T : Set}→
.(eq : m ≡ m1)→ (xs : Vec (Vec T m) n)→
cast eq (transpose xs) ≡ transpose (map (cast eq) xs)

which indicates applying transpose before cast equals to applying transpose after mapping
cast operations onto the input.

The second step is again applying lemmas take-transpose and drop-transpose introduced
in section 4.2.3, to change orders of the operations so that the transposeBeforeSlide can be
applied inductively. The resulting expression is:

transpose (map (take sz) xsss) ::
map transpose (transpose (map (slide sz sp) (map (drop (suc sp)) ys)))

Note that in this expression ~B is the name binding of (map (cast (slide-lem n sz sp)) xsss ).
Similarly, we need to decompose the expression on the right-hand side of the equation into the
expression above, using the lemma decompose-lem2:
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decompose-lem2 : {n m o : ℕ}→ {T : Set}→ (sz sp : ℕ)→
(xsss : Vec (Vec (Vec T o) (suc (sz + (sp + n * suc sp)))) m)→

map transpose (transpose (map (_ xs→ take sz {suc (sp + n * suc sp)} xs ::
slide {n} sz sp (drop (suc sp) (cast (slide-lem n sz sp) xs))) xsss)) ≡
transpose (map (take sz {suc (sp + n * suc sp)}) xsss) ::
map transpose (transpose (map (slide sz sp) (map (drop (suc sp))
(map (cast (slide-lem n sz sp)) xsss))))

By applying this lemma symmetrically in the last step, the proof can be completed.

The proofs of the second 4.27 and third 4.28 slide-transpose rules are constructed in the same
ways respectively as the second and third split-transpose rules, since their patterns are the same
but replacing split with slide in definitions of slide-transpose rules.

4.2.5 Proving join is associative using heterogeneous equality

The last pair of rules in this section are stating the join primitive is associative, which means
given a 3D array, joining the two outer dimensions first and then joining the result with the
innermost dimension is equal to joining the two inner dimensions first and then joining the
result with the outermost dimension. Formally they are defined as:

9>8= ◦ 9>8= → 9>8= ◦<0? 9>8= (4.29)
9>8= ◦<0? 9>8= → 9>8= ◦ 9>8= (4.30)

The definitions are rather straightforward, however, if we try to define the equality relation of
the rule 4.29 in Agda using propositional equality as we have done for all previous proofs:

joinBeforeJoin : {n m o : ℕ}→ {T : Set}→ (xsss : Vec (Vec (Vec T o) m) n)→
join (join xsss) ≡ join (map join xsss)

the compiler will raise an error indicating the type of the right-hand side does not match the
type of the left-hand side of the equation:

n != n * m of type ℕ

when checking that the inferred type of an application

Vec T (n * (m * o))

matches the expected type

Vec T (n * m * o)

The left-hand side of the equation has type (Vec T (n * m * o)) and the right-hand side of the
equation has type (Vec T (n * (m * o))). Although it is intuitive that multiplication is associative
thus these two array has the same size, in Agda, they are two different types. Since propositional
equality has the premise that the two sides of the equation must have the same type, this rule
cannot be proven using propositional equality.

However, (join (join xsss)) and (join (map join xsss)) produces the same value, they have some
kind of equality relation despite their types are different in Agda. We would like to form this
equality relation as heterogeneous equality.

Heterogeneous equality is an equality relation for two expressions with different types, which
is less restrictive than propositional equality. It has been shown useful for reasoning about the
soundness of algorithmic equality, normalisation, consistency, etc., by Abel (2011). The crucial
point of forming heterogeneous equality is reasoning about why the types are equal (Altenkirch
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et al. 2007). For example, we can reason about the equality of type (Vec T (n * m * o)) and (Vec
T (n * (m * o))) by the equality of their sizes; and the equality of their sizes can be justified since
multiplication is associative.

The heterogeneous equality is denoted as � in Agda, this equality relation is also reflexive,
symmetric and transitive. Similar to propositional equality, a reasoning chain can be form with
begin, � and �〈〉. To distinguish from propositional equality reasoning chains, we rename
begin and � to hbegin and h�.
The congruence function in propositional equality is important for reasoning about given an
equality relation G ≡ ~ and a function 5 we can conclude 5 G ≡ 5 ~. To facilitate developing
proofs, a similar congruence function for heterogeneous equality is also introduced:

hcong′ : {U V W : Level} {I : Set U} {i j : I}
→ (A : I→ Set V) {B : {k : I}→ A k→ Set W} {x : A i} {y : A j}
→ i ≡ j
→ (f : {k : I}→ (x : A k)→ B x)
→ x � y
→ f x � f y

hcong′ _ refl _ Heq.refl = Heq.refl

Where � is a constructor function, taking in an argument with type � in the universe Set U and
constructing a type in the universe Set V; � is another constructor function which takes in an
argument constructed by � and produces a type in the universe Set W . Given values 8 and 9 with
the same type � , G and ~ are values constructed by � using 8 and 9 respectively. 5 is a function
using � to construct a value with an argument produced by the constructor �. If there exists
propositional equality between 8 and 9 as well as heterogeneous equality between G and ~, we
can reach the conclusion 5 G and 5 ~ are heterogeneously equal.

Note that we defined this function as hcong′ to distinguish from the congruence function
provided in the standard library. That congruence function does not stress on the proposi-
tional equality reasoning in the type constructor function, thus does not satisfy the important
requirement on constructing heterogeneous equality: reasoning about why two types are equal.

The justification of the rule 4.29 can be expressed using a heterogeneous equality reasoning chain
in Agda, the proof is shown below:

-- The proof of join is associative

joinBeforeJoin : {n m o : ℕ}→ {T : Set}→ (xsss : Vec (Vec (Vec T o) m) n)→
join (join xsss) � join (map join xsss)

joinBeforeJoin [] = Heq.refl
joinBeforeJoin {suc n} {m} {o} {T} (xss :: xsss) =

hbegin
join (xss ++ join xsss)
�〈 join-++ xss (join xsss) 〉

join xss ++ join (join xsss)
�〈 hcong′ (Vec T) (*-assoc n m o) (_ y→ join xss ++ y) (joinBeforeJoin xsss) 〉

join xss ++ join (map join xsss)
h�

The base case can be simply justified since the heterogeneous equality is reflexive. The inductive
case is proven using a lemma join-++ and the induction on itself with the heterogeneous con-
gruence relation defined above. Note that when we apply the heterogeneous congruence in the
proof, (Vec T) is the constructor function �, the associativity of multiplication *-assoc is the
propositional equality relation, the lambda function (_ y→ join xss ++ y) is the function 5 and
the induction on GBBB, i.e., joinBeforeJoin xsss, is the required heterogeneous equality relation.
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The lemma join-++ can be viewed as distribute join over an array concatenation operation,
which is defined as:

join-++ : {n m o : ℕ}→ {T : Set}→
(xs1 : Vec (Vec T o) n)→ (xs2 : Vec (Vec T o) m)→
join (xs1 ++ xs2) � join xs1 ++ join xs2

join-++ [] xs2 = Heq.refl
join-++ {suc n} {m} {o} {T} (xs :: xs1) xs2 =

hbegin
xs ++ join (xs1 ++ xs2)
�〈 hcong′ (Vec T) (*-distribA -+ o n m) (_ y→ xs ++ y) (join-++ xs1 xs2) 〉
xs ++ join xs1 ++ join xs2
�〈 hsym (++-assoc xs (join xs1) (join xs2)) 〉

(xs ++ join xs1) ++ join xs2
h�

It states that concatenating two 2D arrays together and then joining the resulting 2D array have
the same result as joining these two 2D arrays separately and then concatenating the results
together. The left-hand side and right-hand side are heterogeneously equal since the natural
number multiplication is distributive over addition. It is proven based on the fact the array
concatenation operation is associative:

-- The proof of array concatenation is associative
++-assoc : {n m o : ℕ}→ {T : Set}→

(xs : Vec T n)→ (ys : Vec T m)→ (zs : Vec T o)→
(xs ++ ys) ++ zs � xs ++ (ys ++ zs)

++-assoc [] ys zs = Heq.refl
++-assoc {suc n} {m} {o} {T} (x :: xs) ys zs =

hcong′ (Vec T) (+-assoc n m o) (_ l→ x :: l) (++-assoc xs ys zs)

Again the reasoning chain is established with heterogeneous equations, the equality of the sizes
of left-hand side and right-hand side of the of the definition can be proven equal since the natural
number addition is associative.

The second rule 4.30 can be then proven correct since heterogeneous equality is a symmetric
relation:

-- Heterogeneous equality is symmetric

mapJoinBeforeJoin : {n m o : ℕ}→ {T : Set}→ (xsss : Vec (Vec (Vec T o) m) n)→
join (map join xsss) � join (join xsss)

mapJoinBeforeJoin xsss = hsym (joinBeforeJoin xsss)

From the above proofs, it can be pointed out that array concatenation can be viewed as an
addition operation on sizes of arrays, and the join operation can be viewed as the multiplication
on the sizes of two dimensions of an array. and these two operations have some properties same
as natural number addition and multiplication, i.e., being associative and distributive.

4.2.6 Summary

This this section, we first introduce a set of movement rules that changes the orders of map and
other primitive operations in expressions (section 4.2.2), they can be broken down into lemmas
when developing proofs. Then we introduces three set of rules that move transpose around
primitives join, split, and slide in section 4.2.2, 4.2.3 and 4.2.4. Rules in each set are internally
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related, thus if we prove one in each set to be correct, the proofs of other rules can be sequentially
developed using proven ones. Lastly, we introduce an equality relation justifying expressions
with different types, i.e., heterogeneous equality in section 4.2.5, and make use of it proving the
join primitive is associative. We further discuss about the similarities between natural number
operations and array operations.

4.3 Tiling: a stencil computation rule
In the last section of this chapter, we would like to formalise and verify the tiling rule, which is a
stencil computation rule introduced by Hagedorn et al. (2018). It partitions applying map to the
resulting 2D array produced by slide. The general idea is with the consideration of overlapping,
firstly applying slide to get larger chunks, and then applying slide in each chunk with the
given B8I4 and BC4?, joining the larger chunks together at the end. Formally it is defined as:

<0? 5 ◦ B;834 B8I4 BC4? → 9>8= ◦<0? (_ C8;4.<0? 5 ◦ (B;834 B8I4 BC4? C8;4)) B;834 D E (4.31)

In the paper, restrictions of choices D and E in rule 4.31 are not specified. The only piece of
specified information is D − E = B8I4 − BC4?. Therefore, firstly we would like to give some
restrictions on the choices of D and E .

According to the definition of slide in Agda (section 3.2.4), we know that the size of the input
array should satisfy (BI + = ∗ (BD2 B?)), where BI and B? are the chosen size and step. Hence a
general choice of D should be (BI + = ∗ (BD2 B?)), allowing the following slide to be operated on.
Then the value of (BD2 E) can calculate: ((BD2 =) ∗ (BD2 B?)), ensure the difference between D and
BD2 E equals to BI and (BD2 B?). We use BD2 to ensure the value of step to be larger than zero.

The rule is proven in Agda as:

-- the proof of the tiling rule

tiling : {n m : ℕ}→ {S T : Set}→ (sz sp : ℕ)→ (f : Vec S sz→ Vec T sz)→
(xs : Vec S (sz + n * (suc sp) + m * suc (n + sp + n * sp)))→

join (map (_ (tile : Vec S (sz + n * (suc sp)))→
map f (slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs)) ≡
map f (slide {n + m * (suc n)} sz sp (cast (lem1 n m sz sp) xs))

tiling {n} {m} {s} {t} sz sp f xs =
begin

join (map (_ (tile : Vec s (sz + n * (suc sp)))→ map f (slide {n} sz sp tile))
(slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs))
≡〈 cong join (map-_ {n} {m} sz sp f xs) 〉

join (map (map f) (map (slide {n} sz sp)
(slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)))
≡〈 mapMapFBeforeJoin f (map (slide {n} sz sp)

(slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)) 〉
map f (join (map (slide {n} sz sp) (slide {m} (sz + n * suc sp) (n + sp + n * sp) xs)))
≡〈 cong (map f) (slideJoin {n} {m} sz sp xs) 〉

refl

Note that in the declaration of the equality relation, we apply the lemma lem1 to adjust the size
of the input array GB to allow pattern matching for the operation (slide {n + m * (suc n)} sz sp) at
right-hand side of the equation. lem1 is defined as:

lem1 : (n m sz sp : ℕ)→
sz + n * suc sp + m * suc (n + sp + n * sp) ≡ sz + (n + m * suc n) * suc sp
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The proof is developed using three rules: map-_ for changing the order of map and the lambda
function in the expression, a movement rule mapMapFBeforeJoin (rule 4.16) introduced in section
4.2.1, and the rule slideJoin.

Basically the map-_ rule moves the (map 5 ) out of the lambda function as nested map operations,
allowing the mapMapFBeforeJoin to be applied to group the operations into the pattern which
satisfies the rule slideJoin.

The rule map-_ is defined and proven inductively as below:

map-_ : {n m : ℕ}→ {S T : Set}→ (sz : ℕ)→ (sp : ℕ)→ (f : Vec S sz→ Vec T sz)→
(xs : Vec S (sz + n * (suc sp) + m * suc (n + sp + n * sp)))→

map (_ (tile : Vec S (sz + n * (suc sp)))→
map f (slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs) ≡
map (map f) ((map (_ (tile : Vec S (sz + n * (suc sp)))→
slide {n} sz sp tile)) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs))

map-_ {n} {zero} sz sp f xs = refl
map-_ {n} {suc m} sz sp f xs =

begin
map f (slide sz sp (take (sz + n * suc sp) xs)) ::
map (_ tile→ map f (slide sz sp tile)) (slide (sz + n * suc sp) (n + sp + n * sp)
(drop (suc (n + sp + n * sp)) (cast _ xs)))
≡〈 cong (map f (slide sz sp (take (sz + n * suc sp) xs)) ::_)

(map-_ sz sp f (drop (suc (n + sp + n * sp)) (cast _ xs))) 〉
refl

The slideJoin rule is a partition strategy of the slide operation, formally defined as:

B;834 B8I4 BC4? → 9>8= ◦<0? (_ C8;4. B;834 B8I4 BC4? C8;4) B;834 D E (4.32)

Since the order of the application of <0? 5 in tiling rule 4.31 can be handled by map-_ and
the movement rule 4.16, i.e., mapMapFBeforeJoin, if we prove this partitioning strategy to be
correct, we can conclude this tiling rule is correct.

This rule is originally defined as:

B;834 B8I4 BC4? → 9>8= ◦ (_ C8;4.<0? (B;834 B8I4 BC4? C8;4)) B;834 D E

which is not correct. When we try to encode it in Agda, the right-hand side does not share the
same type of the left-hand side; the orders of the function does not satisfy the pattern matching
on the type of the input array. Hence we revise the definition as rule 4.32.

The proof of the slideJoin rule is shown below:

slideJoin : {n m : ℕ}→ {T : Set}→ (sz : ℕ)→ (sp : ℕ)→
(xs : Vec T (sz + n * (suc sp) + m * suc (n + sp + n * sp)))→

join (map (_ (tile : Vec T (sz + n * (suc sp)))→
slide {n} sz sp tile) (slide {m} (sz + n * (suc sp)) (n + sp + n * sp) xs)) ≡
slide {n + m * (suc n)} sz sp (cast (lem1 n m sz sp) xs)

slideJoin {n} {zero} sz sp xs =
begin

slide sz sp xs ++ []
≡〈 ++-[] (slide sz sp xs) 〉

slide sz sp xs
≡〈 cong (slide sz sp) (lem2 {n} {sz} {sp} xs) 〉
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refl
slideJoin {n} {suc m} sz sp xs =

begin
slide {n} sz sp (take (sz + n * suc sp) xs) ++
join (map (slide {n} sz sp) (slide {m} (sz + n * suc sp) (n + sp + n * sp)
(drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs))))
≡〈 cong (slide {n} sz sp (take (sz + n * suc sp) xs) ++_)

(slideJoin {n} {m} sz sp (drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs)) ) 〉
slide {n} sz sp (take (sz + n * suc sp) xs) ++
slide {n + m * suc n} sz sp (cast (lem1 n m sz sp)
(drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs)))
≡〈 lem4 {n} {m} sz sp xs 〉

refl

Again, lem1 is used in the definition for adjusting the pattern of the size of the input array. Some
other lemmas are used in the proof.

In the base case, we first use lemma ++-[] to justify the concatenation of a given array with an
empty array produces the array itself. And then we uses the lem2 to reason about that the casting
operation using lem1 when the value < is zero does not change the value of the input array,
which is defined as:

lem2 : {n sz sp : ℕ}→ {T : Set}→ (xs : Vec T (sz + n * suc sp))→
xs ≡ cast (lem1 n zero sz sp) xs

lem2 {zero} {zero} {sp} [] = refl
lem2 {zero} {suc sz} {sp} (x :: xs) = cong (x ::_) (lem2 {zero} {sz} {sp} xs)
lem2 {suc n} {zero} {sp} (x :: xs) = cong (x ::_) (lem2 {n} {sp} {sp} xs)
lem2 {suc n} {suc sz} {sp} (x :: xs) = cong (x ::_) (lem2 {suc n} {sz} {sp} xs)

In the inductive case, lem3 is another lemma for adjusting the size of input array used by cast:

lem3 : (n m sz sp : ℕ)→
suc (sz + n * suc sp + (n + sp + n * sp + m * suc (n + sp + n * sp))) ≡
suc (n + sp + n * sp + (sz + n * suc sp + m * suc (n + sp + n * sp)))

It can be proven by the properties of natural number addition and multiplication. The proof of
the inductive case also has two steps. The first step is inductively applying slideJoin with the
adjusted pattern of the input array’s size, in the second step, a lemma lem4 is applied:

postulate lem4 : {n m : ℕ}→ {T : Set}→ (sz sp : ℕ)→
(xs : Vec T (suc (sz + n * suc sp +
(n + sp + n * sp + m * suc (n + sp + n * sp)))))→
slide {n} sz sp (take (sz + n * suc sp)
{suc (n + sp + n * sp + m * suc (n + sp + n * sp))} xs) ++
slide {n + m * suc n} sz sp (cast (lem1 n m sz sp)
(drop (suc (n + sp + n * sp)) (cast (lem3 n m sz sp) xs)))
≡
take sz {suc (sp + (n + (n + m * suc n)) * suc sp)}
(cast (lem1 n (suc m) sz sp) xs) ::
slide {n + (n + m * suc n)} sz sp
(drop (suc sp) {sz + (n + (n + m * suc n)) * suc sp}
(cast (slide-lem (n + (n + m * suc n)) sz sp )
(cast (lem1 n (suc m) sz sp) xs)))
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The left-hand side of the equation is a concatenation of the results of applying (slide BI B?) on
the array of size D taken from the input array and applying (slide BI B?) on the input array after
dropping size (BD2 E); the right-hand side of the equation is the normalised pattern of the (slide
BI B?) operation on the input array by the definition of slide in section 3.2.4.

It can be written in a mathematical form that is easier to read:

B;834 BI B? ◦ C0:4 D ++ B;834 BI B? ◦ 3A>? (BD2 E) → B;834 BI B? (4.33)

We believe the left-hand side is equal to the right-hand side, since the overlap when performing
take and drop is the difference between D and BD2 E , which equals to the overlap in the (slide
BI B?), because the difference between D and (BD2 E) equals to the difference between BI and
(BD2 B?) by our definition. However, due to the over complicated cast operations for adjusting
the sizes of arrays for pattern matching, we have so far not able to develop the proof in Agda of
this lemma.

An example for detailed illustration is shown in figure 4.1:

Figure 4.1: An example for illustrating lem4

In this example, BI = 3, BD2 B? = 1, D = 5 and BD2 E = 3, it clearly shows that the result we get
from the left-hand side of the lemma lem4 equals to the result of the right-hand side.

4.3.1 Summary

In this section, we provide the verification of an complex stencil computation rule in Agda.
Advantages of machine verification are obvious. Firstly, we make use of the dependently typed
pattern matching in Agda to introduce general restrictions on the choices of D and E in the tiling
rule 4.31. Comparing to the original piece of information we have, i.e., the difference between D
and E should equal to the difference between B8I4 and BC4?, this accurate formalisation can be
helpful to eliminate errors in the implementation. Moreover, this complex rule is broken down
into smaller rules and justified step by step in a clear structure.

However, the dependently typed pattern matching in Agda also has its limitations. We have to
keep doing equality reasoning on arrays’ sizes using the properties of natural number addition
and multiplication while developing proofs. In the last lemma lem4, since casting the input array’s
size over complicates the declaration, we have so far not been able to develop a proof although in
mathematical form it can be justified.
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5 Research Outcomes

In this project, some important LIFT data types and a large set of primitive operations have been
encoded in Agda, and a set of mechanical proofs have been developed to verified the correctness of
three categories of rewrite rules: algorithmic rules, movement rules and the stencil computation
rule. In general, most of the rules have been proven correct, the incorrect proof and definition
have been revised, and inaccurate definitions of arguments’ patterns have been clarified. In
general, we find machine verification is helpful for formalising and verifying these rewrite rules
for optimising the efficiency of array and multi-dimensional array operations.

Induction is the core of the construction of semantics and proofs. It is effective for giving clear
structural definitions of data types and primitives as well as constructing reasoning chains in
proofs. Agda is helpful for formalising semantics and proofs following proposition-as-type
interpretation since it is dependently typed, however this feature also introduces complexities
in pattern matching. Some strategies are introduced for resolving these complexities, such as
casting patterns at constructor level with equality reasoning with cast defined in section 3.2.4;
using REWRITE to increase the flexibility of pattern matching while ensuring the soundness of
the type system (section 3.2.5); and proving the equality between two expression with different
types with heterogeneous equality (section 4.2.5).

Some strategies of constructing proofs are also discussed. A complex rule can be broken down
into smaller rules, for example, the tiling rule 4.31 is proven using two rules moving the map 5
operation into suitable order, and the slideJoin rule to provide the algorithmic justification.
Effective lemmas can be defined according to the definitions of primitives, for example, reasoning
on expressions containing split can always be proven using lemmas specifying properties of
take and drop since split is defined using them (3.2). Also, as the proofs discussed in section
4.2.2, section 4.2.3 and section 4.2.4, some rules are internally related to each other, when one of
them is proven, the verification of others can be developed based on the proven ones.
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6 Conclusion and Future Work

Effective mechanical verification in Agda is developed for justifying the correctness of the rewrite
rules in LIFT.Most of the rewrite rules are proven to be correct while some incorrect or inaccurate
rules are adjusted and clarified.

We give brief introduction in chapter 1 about the motivation and aims of the project, and
provide background information of LIFT, Agda as well as the computation model Curry-
Howard Correspondence in chapter 2. In chapter 3, encoding LIFT’s data types and primitives
into operational semantics in Agda is introduced. In chapter 4, we discuss in detail about the
development of verification for algorithmic rules, movement rules and the stencil computation
rule using proof by induction. The outcomes together with what we have learned in this project
are discussed in chapter 5.

In current stage, we are not able to prove the last lemma used in proving the tiling rule (4.31)
in section 4.3 due to the over-complicated pattern matching on the sizes of arrays. It would be
interesting for us to research on strategies to simplify these tedious pattern matching in complex
multi-dimensional array operations under dependently typed theorem provers like Agda. The
REWRITE feature discussed in section 3.2.5 can be useful, however its usage is very limited since it
can damage the confluence of the type system and affect the termination of programs.

We would also like to explore the restrictions and justify the correctness of applying similar tiling
rules in 2D arrays, with stencil computation primitives for 2D arrays, e.g., slide2 and padCst2,
and potentially generalise the verification on rules defined for n-dimensional arrays.
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